Skip to main content

The Importance of Visceral Feedbacks: Focus on Chemoreceptors

Role of Peripheral and Central Sensors of Oxygen, Carbon Dioxide, and pH

  • Chapter
  • First Online:
The Breathless Heart

Abstract

Chronic heart failure (CHF) is characterized by a resetting of visceral feedbacks, with increased chemo- and ergoreflex sensitivities and reduced baroreflex sensitivity. The discharge rate of peripheral and/or central chemoreceptors may be enhanced in CHF, mostly due to neurohormonal stimulation and/or hypoperfusion of chemosensitive areas; increased chemoreceptor activity may contribute to the development of periodic breathing/Cheyne–Stokes respiration (PB/CSR), but also to sympatho-vagal imbalance, with adrenergic activation and vagal withdrawal. In addition, baroreflex depression and ergoreflex activation could be promoted by increased chemoreflex sensitivity and could contribute to autonomic dysfunction and ventilatory instability, although current evidences are limited.

In the present chapter, we will discuss the causes of enhanced chemoreflex sensitivity and the complex interplay among visceral feedbacks in the determinism of PB/CSR and the associated autonomic imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ang II:

Angiotensin II

AT1R:

AG-II receptors type 1

BBB:

Blood–brain barrier

CB:

Carotid body

CHF:

Chronic heart failure

CNS:

Central nervous system

CRG:

Central respiratory generator

CSR:

Cheyne–Stokes respiration

HCVR:

Hypercapnic ventilatory response

HRV:

Heart rate variability

HVR:

Hypoxic ventilatory response

KLF2:

Kruppel-like factor 2

LVEF:

Left ventricular ejection fraction

NO:

Nitric oxide

nNOS:

Neuronal nitric oxide synthase

NREM:

Non-rapid eye movement

NST:

Nucleus of the solitary tract

NYHA:

New York Heart Association

O2 :

Oxygen superoxide

PaCO2 :

Arterial partial pressure of carbon dioxide

PB:

Periodic breathing

VE/VCO2 slope:

Ventilation/carbon dioxide output slope

References

  1. Piepoli MF, Crisafulli A. Pathophysiology of human heart failure: importance of skeletal muscle myopathy and reflexes. Exp Physiol. 2014;99:609–15.

    Article  CAS  PubMed  Google Scholar 

  2. Piepoli MF, Ponikowski PP, Volterrani M, Francis D, Coats AJ. Aetiology and pathophysiological implications of oscillatory ventilation at rest and during exercise in chronic heart failure. Do Cheyne and Stokes have an important message for modern-day patients with heart failure? Eur Heart J. 1999;20:946–53.

    Article  CAS  PubMed  Google Scholar 

  3. Mansukhani MP, Wang S, Somers VK. Chemoreflex physiology and implications for sleep apnoea: insights from studies in humans. Exp Physiol. 2015;100:130–5.

    Article  PubMed  Google Scholar 

  4. Passino C, Giannoni A, Milli M, Polettii R, Emdin M. Recenti conoscenze sulla sensibilità chemocettiva ad ipossia ed ipercapnia in patologia cardiovascolare. Recenti Prog Med. 2010;101:308–13.

    PubMed  Google Scholar 

  5. Ponikowski P, Anker SD, Chua TP, Francis D, Banasiak W, Poole-Wilson PA, et al. Oscillatory breathing patterns during wakefulness in patients with chronic heart failure: clinical implications and role of augmented peripheral chemosensitivity. Circulation. 1999;100:2418–24.

    Article  CAS  PubMed  Google Scholar 

  6. Schultz HD, Marcus NJ, Del Rio R. Role of the carotid body chemoreflex in the pathophysiology of heart failure: a perspective from animal studies. Adv Exp Med Biol. 2015;860:167–85.

    Article  PubMed  Google Scholar 

  7. Ganong WF. Review of medical physiology. 21st ed. New York: Lange Medical Books/McGrow-Hill; 2003.

    Google Scholar 

  8. Schultz HD, Sun SY. Chemoreflex function in heart failure. Heart Fail Rev. 2000;5:45–56.

    Article  CAS  PubMed  Google Scholar 

  9. Giannoni A, Emdin M, Poletti R, Bramanti F, Prontera C, Piepoli M, et al. Clinical significance of chemosensitivity in chronic heart failure: influence on neurohormonal derangement, Cheyne-Stokes respiration and arrhythmias. Clin Sci (Lond). 2008;114:489–97.

    Article  CAS  Google Scholar 

  10. Chua TP, Ponikowski P, Webb-Peploe K, Harrington D, Anker SD, Piepoli M, et al. Clinical characteristics of chronic heart failure patients with an augmented peripheral chemoreflex. Eur Heart J. 1997;18:480–6.

    Article  CAS  PubMed  Google Scholar 

  11. Ponikowski P, Francis DP, Piepoli MF, Davies LC, Chua TP, Davos CH, et al. Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance: marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis. Circulation. 2001;103:967–72.

    Article  CAS  PubMed  Google Scholar 

  12. Ponikowski P, Chua TP, Piepoli M, Ondusova D, Webb-Peploe K, Harrington D, et al. Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation. 1997;96:2586–94.

    Article  CAS  PubMed  Google Scholar 

  13. Read DJC. A clinical method for assessing the ventilatory response to carbon dioxide. Australas Ann Med. 1967;16:20–32.

    CAS  PubMed  Google Scholar 

  14. Javaheri S. A mechanism of central sleep apnea in patients with heart failure. N Engl J Med. 1999;341:949–54.

    Article  CAS  PubMed  Google Scholar 

  15. Giannoni A, Emdin M, Bramanti F, Iudice G, Francis DP, Barsotti A, et al. Combined increased chemosensitivity to hypoxia and hypercapnia as a prognosticator in heart failure. J Am Coll Cardiol. 2009;53:1975–80.

    Article  PubMed  Google Scholar 

  16. Ponikowski P, Chua TP, Anker SD, Francis DP, Doehner W, Banasiak W, et al. Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation. 2001;104:544–9.

    Article  CAS  PubMed  Google Scholar 

  17. Schultz HD, Marcus NJ, Del Rio R. Role of the carotid body in the pathophysiology of heart failure. Curr Hypertens Rep. 2013;15:356–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li YL, Gao L, Zucker IH, Schultz HD. NADPH oxidase-derived superoxide anion mediates angiotensin II-enhanced carotid body chemoreceptor sensitivity in heart failure rabbits. Cardiovasc Res. 2007;75:546–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li YL, Xia XH, Zheng H, Gao L, Li YF, Liu D, et al. Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits. Cardiovasc Res. 2006;71:129–38.

    Article  CAS  PubMed  Google Scholar 

  20. Ding Y, Li YL, Zimmerman MC, Schultz HD. Elevated mitochondrial superoxide contributes to enhanced chemoreflex in heart failure rabbits. Am J Physiol Regul Integr Comp Physiol. 2010;298:R303–311.

    Article  CAS  PubMed  Google Scholar 

  21. Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, et al. Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol. 2005;167:609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Thienen JV, Fledderus JO, Dekker RJ, Rohlena J, van Ijzendoorn GA, Kootstra NA, et al. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc Res. 2006;72:231–40.

    Article  PubMed  Google Scholar 

  23. Haack KK, Marcus NJ, Del Rio R, Zucker IH, Schultz HD. Simvastatin treatment attenuates increased respiratory variability and apnea/hypopnea index in rats with chronic heart failure. Hypertension. 2014;63:1041–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ding Y, Li YL, Schultz HD. Role of blood flow in carotid body chemoreflex function in heart failure. J Physiol. 2011;589:245–58.

    Article  CAS  PubMed  Google Scholar 

  25. Del Rio R, Moya EA, Iturriaga R. Differential expression of pro-inflammatory cytokines, endothelin-1 and nitric oxide synthases in the rat carotid body exposed to intermittent hypoxia. Brain Res. 2011;1395:74–85.

    Article  PubMed  Google Scholar 

  26. Zhang M, Piskuric NA, Vollmer C, Nurse CA. P2Y2 receptor activation opens pannexin-1 channels in rat carotid body type II cells: potential role in amplifying the neurotransmitter ATP. J Physiol. 2012;590:4335–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stornetta RL, Moreira TS, Takakura AC, Kang BJ, Chang DA, West GH, et al. Expression of Phox2b by neurons involved in chemosensory integration in the adult rat. J Neurosci. 2006;26:10305–14.

    Article  CAS  PubMed  Google Scholar 

  28. Takakura AC, Moreira TS, Colombari E, West GH, Stornetta RL, Guyenet PG. Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats. J Physiol. 2006;572:503–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dempsey JA, Smith CA, Blain GM, Xie A, Gong Y, Teodorescu M. Role of central/peripheral chemoreceptors and their interdependence in the pathophysiology of sleep apnea. Adv Exp Med Biol. 2012;758:343–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yamada K, Asanoi H, Ueno H, Joho S, Takagawa J, Kameyama T, et al. Role of central sympathoexcitation in enhanced hypercapnic chemosensitivity in patients with heart failure. Am Heart J. 2004;148:964–70.

    Article  CAS  PubMed  Google Scholar 

  31. Head GA. Role of AT1 receptors in the central control of sympathetic vasomotor function. Clin Exp Pharmacol Physiol Suppl. 1996;3:S93–98.

    Article  CAS  PubMed  Google Scholar 

  32. Willie CK, Macleod DB, Shaw AD, Mith KJ, Tzeng YC, Eves ND, et al. Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol. 2012;590:3261–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meng L, Hou W, Chui J, Han R, Gelb AW. Cardiac output and cerebral blood flow: the integrated regulation of brain perfusion in adult humans. Anesthesiology. 2015;123:1198–208.

    Article  PubMed  Google Scholar 

  34. Chenuel BJ, Smith CA, Skatrud JB, Henderson KS, Dempsey JA. Increased propensity for apnea in response to acute elevations in left atrial pressure during sleep in the dog. J Appl Physiol. 2006;101:76–83.

    Article  PubMed  Google Scholar 

  35. Nattie E, Li A. Central chemoreceptors: locations and functions. Compr Physiol. 2012;2:221–54.

    PubMed  PubMed Central  Google Scholar 

  36. Smith CA, Rodman JR, Chenuel BJ, Henderson KS, Dempsey JA. Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors. J Appl Physiol. 2006;100:13–9.

    Article  CAS  PubMed  Google Scholar 

  37. Pedersen MEF, Fatemian M, Robbins PA. Identification of fast and slow ventilatory responses to carbon dioxide under hypoxic and hyperoxic conditions in humans. J Physiol. 1999;521:273–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dahan A, Nieuwenhuijs D, Teppema L. Plasticity of central chemoreceptors: effect of bilateral carotid body resection on central CO2 sensitivity. PLoS Med. 2007;4:e239.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Smith CA, Forster HV, Blain GM, Dempsey JA. An interdependent model of central/peripheral chemoreception: evidence and implications for ventilatory control. Respir Physiol Neurobiol. 2010;173:288–97.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blain GM, Smith CA, Henderson KS, Dempsey JA. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2). J Physiol. 2010;588:2455–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith CA, Blain GM, Henderson KS, et al. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2: role of carotid body CO2. J Physiol. 2015;593:4225–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith CA, Saupe KW, Henderson KS, Dempsey JA. Ventilatory effects of specific carotid body hypocapnia in dogs during wakefulness and sleep. J Appl Physiol. 1995;79:689–99.

    CAS  PubMed  Google Scholar 

  43. Smith CA, Chenuel BJ, Henderson KS, Dempsey JA. The apneic threshold during non-REM sleep in dogs: sensitivity of carotid body vs. central chemoreceptors. J Appl Physiol. 2007;103:578–86.

    Article  CAS  PubMed  Google Scholar 

  44. Marcus NJ, Schultz HD. Role of carotid body chemoreflex function in the development of Cheyne-Stokes Respiration during progression of congestive heart failure. FASEB J. 2011;25:841–7.

    Google Scholar 

  45. Solin P, Roebuck T, Johns DP, Walters EH, Naughton MT. Peripheral and central ventilatory responses in central sleep apnea with and without congestive heart failure. Am J Respir Crit Care Med. 2000;162:2194–200.

    Article  CAS  PubMed  Google Scholar 

  46. McAllen RM. Actions of carotid chemoreceptors on subretrofacial bulbospinal neurons in the cat. J Auton Nerv Syst. 1992;40:181–8.

    Article  CAS  PubMed  Google Scholar 

  47. Del Rio R, Moya EA, Iturriaga R. Carotid body potentiation during chronic intermittent hypoxia: implication for hypertension. Front Physiol. 2014;5:434.

    PubMed  PubMed Central  Google Scholar 

  48. Schultz HD, Marcus NJ, Del Rio R. Mechanisms of carotid body chemoreflex dysfunction during heart failure. Exp Physiol. 2015;100:124–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xing DT, May CN, Booth LC, Ramchandra R. Tonic arterial chemoreceptor activity contributes to cardiac sympathetic activation in mild ovine heart failure. Exp Physiol. 2014;99:1031–41.

    Article  PubMed  Google Scholar 

  50. Giannoni A, Passino C, Mirizzi G, Del Franco A, Aimo A, Emdin M. Treating chemoreflex in heart failure: modulation or demolition? J Physiol. 2014;592:1903–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guyenet PG, Stornetta RL, Abbott SB, Depuy SD, Fortuna MG, Kanbar R. Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. J Appl Physiol (1985). 2010;108:995–1002.

    Google Scholar 

  52. Guyenet PG. Regulation of breathing and autonomic outflows by chemoreceptors. Compr Physiol. 2014;4:1511–62.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Somers VK, Mark AL, Zavala DC, Abboud FM. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J Appl Physiol (1985). 1989;67:2101–6.

    Google Scholar 

  54. Pitsikoulis C, Bartels MN, Gates G, Rebmann RA, Layton AM, De Meersman RE. Sympathetic drive is modulated by central chemoreceptor activation. Respir Physiol Neurobiol. 2008;164:373–9.

    Article  PubMed  Google Scholar 

  55. Benarroch EE. The arterial baroreflex: functional organization and involvement in neurologic disease. Neurology. 2008;71:1733–8.

    Article  PubMed  Google Scholar 

  56. La Rovere MT, Pinna GD, Maestri R, Robbi E, Caporotondi A, Guazzotti G, et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol. 2009;53:193–9.

    Article  PubMed  Google Scholar 

  57. Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375–85.

    Article  CAS  PubMed  Google Scholar 

  58. Oikawa S, Hirakawa H, Kusakabe T, Nakashima Y, Hayashida Y. Autonomic cardiovascular responses to hypercapnia in conscious rats: the roles of the chemo- and baroreceptors. Auton Neurosci. 2005;117:105–14.

    Article  PubMed  Google Scholar 

  59. Katayama PL, Castania JA, Dias DP, Patel KP, Fazan Jr R, Salgado HC. Role of chemoreceptor activation in hemodynamic responses to electrical stimulation of the carotid sinus in conscious rats. Hypertension. 2015;66:598–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cooper VL, Pearson SB, Bowker CM, Elliott MW, Hainsworth R. Interaction of chemoreceptor and baroreceptor reflexes by hypoxia and hypercapnia – A mechanism for promoting hypertension in obstructive sleep apnoea. J Physiol. 2005;568:677–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin J, Ngwompo RF, Tilley DG. Development of a cardiopulmonary mathematical model incorporating a baro-chemoreceptor reflex control system. Proc Inst Mech Eng H. 2012;226:787–803.

    Article  PubMed  Google Scholar 

  62. Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest. 1991;87:1953–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Despas F, Lambert E, Vaccaro A, Labrunee M, Franchitto N, Lebrin M, et al. Peripheral chemoreflex activation contributes to sympathetic baroreflex impairment in chronic heart failure. J Hypertens. 2012;30:753–60.

    Article  CAS  PubMed  Google Scholar 

  64. van de Vooren H, Gademan MG, Swenne CA, TenVoorde BJ, Schalij MJ, Van der Wall EE. Baroreflex sensitivity, blood pressure buffering, and resonance: what are the links? Computer simulation of healthy subjects and heart failure patients. J Appl Physiol (1985). 2007;102:1348–56.

    Google Scholar 

  65. Preiss G, Iscoe S, Polosa C. Analysis of a periodic breathing pattern associated with Mayer waves. Am J Physiol. 1975;228:768–74.

    CAS  PubMed  Google Scholar 

  66. Nobrega AC, O’Leary D, Silva BM, Marongiu E, Piepoli MF, Crisafulli A. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. Biomed Res Int. 2014;2014:478965.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Piepoli MF, Coats AJ. Increased metaboreceptor stimulation explains the exaggerated exercise pressor reflex seen in heart failure. J Appl Physiol (1985). 2007;102:494–6.

    Google Scholar 

  68. Middlekauff HR, Sinoway LI. Increased mechanoreceptor stimulation explains the exaggerated exercise pressor reflex seen in heart failure. J Appl Physiol (1985). 2007;102:492–4.

    Google Scholar 

  69. Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol. 2014;64:1388–400.

    Article  PubMed  Google Scholar 

  70. Scott AC, Davies LC, Coats AJ, Piepoli M. Relationship of skeletal muscle metaboreceptors in the upper and lower limbs with the respiratory control in patients with heart failure. Clin Sci (Lond). 2002;102:23–30.

    Article  Google Scholar 

  71. Chua TP, Clark AL, Amadi AA, Coats AJ. Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol. 1996;27:650–7.

    Google Scholar 

  72. www.patientslikeme.com/clinical_trials/NCT01050179-chemosensitivity

  73. Giannoni A, Mirizzi G, Aimo A, Emdin M, Passino C. Peripheral reflex feedbacks in chronic heart failure: is it time for a direct treatment? World J Cardiol. 2015;7:824–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Giannoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giannoni, A., Aimo, A., Bramanti, F., Piepoli, M.F. (2017). The Importance of Visceral Feedbacks: Focus on Chemoreceptors. In: Emdin, M., Giannoni, A., Passino, C. (eds) The Breathless Heart. Springer, Cham. https://doi.org/10.1007/978-3-319-26354-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26354-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26352-6

  • Online ISBN: 978-3-319-26354-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics