Skip to main content

Navigation Under Uncertainty Based on Active SLAM Concepts

  • Chapter
  • First Online:
Book cover Handling Uncertainty and Networked Structure in Robot Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 42))

Abstract

This chapter addresses the problem of path planning considering uncertainty criteria over the belief space. We propose a path planning algorithm that uses a determinant-based measure of uncertainty and a reduced representation of the environment, in order to obtain the minimum uncertainty path from a roadmap. The determinant-based measure of uncertainty is borrowed from the active SLAM literature. We also present in this chapter an overview of the active SLAM problem. Our path planning proposal does not require a priori knowledge of the environment due to the construction of the roadmap via a graph-based SLAM algorithm. We report experimental results of our proposal in four datasets that show its feasibility to obtain the minimum uncertainty path towards an autonomous navigation framework. We also show an improvement in the computation time with respect to the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bajcsy R (1988) Active perception. Proc IEEE 76(8):966–1005. doi:10.1109/5.5968

    Article  Google Scholar 

  • Bar-Shalom Y, Kirubarajan T, Li XR (2002) Estimation with applications to tracking and navigation. Wiley, New York

    Google Scholar 

  • Barraquand J, Ferbach P (1995) Motion planning with uncertainty: the information space approach. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 1341–1348

    Google Scholar 

  • Blanco J, Fernández-Madrigal J, Gonzalez J (2008) A novel measure of uncertainty for mobile robot SLAM with Rao-Blackwellized particle filters. Int J Robot Res (IJRR) 27(1):73–89. doi:10.1177/0278364907082610

    Article  Google Scholar 

  • Borghi G, Caglioti V (1998) Minimum uncertainty explorations in the self-localization of mobile robots. IEEE Trans Robot (TRO) 14(6):902–911. doi:10.1109/70.736774

    Article  Google Scholar 

  • Bourgault F, Makarenko A, Williams S, Grocholsky B, Durrant-Whyte H (2002) Information based adaptive robotic exploration. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 540–545. doi:10.1109/IRDS.2002.1041446

  • Burgard W, Fox D, Thrun S (1997) Active mobile robot localization by entropy minimization. In: Proceedings of the second EUROMICRO workshop on advanced mobile robots, pp 155–162. doi:10.1109/EURBOT.1997.633623

  • Burgard W, Moors M, Stachniss C, Schneider F (2005) Coordinated multi-robot exploration. IEEE Trans Robot (TRO) 21(3):376–386. doi:10.1109/TRO.2004.839232

    Article  Google Scholar 

  • Carlone L, Du J, Kaouk M, Bona B, Indri M (2010) An application of Kullback–Leibler divergence to active SLAM and exploration with particle filters. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 287–293. doi:10.1109/IROS.2010.5652164

  • Carlone L, Du J, Kaouk M, Bona B, Indri M (2014) Active SLAM and exploration with particle filters using Kullback–Leibler divergence. J Intell Robot Syst (JIRS) 75(2):291–311

    Google Scholar 

  • Carrillo H, Latif Y, Neira J, Castellanos JA (2012a) Fast minimum uncertainty search on a graph map representation. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), Vilamoura, Portugal, pp 2504–2511. doi:10.1109/IROS.2012.6385927

  • Carrillo H, Reid I, Castellanos JA (2012b) On the comparison of uncertainty criteria for active SLAM. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), St. Paul, MN, USA, pp 2080–2087. doi:10.1109/ICRA.2012.6224890

  • Carrillo H, Birbach O, Taubig H, Bauml B, Frese U, Castellanos JA (2013) On task-oriented criteria for configurations selection in robot calibration. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Karlsruhe, Germany, pp 3653–3659. doi:10.1109/ICRA.2013.6631090

  • Carrillo H, Dames P, Kumar K, Castellanos JA (2014a) Autonomous robotic exploration using occupancy grid maps and graph SLAM based on Shannon and Rényi entropy. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). Seattle, WA, USA, pp 487–494

    Google Scholar 

  • Carrillo H, Latif Y, Rodríguez ML, Neira J, Castellanos JA (2014b) On the monotonicity of optimality criteria during exploration in active SLAM. In: Proceedings of the IEEE international conference on robotics and automation (ICRA). Seattle, WA, USA, pp 1476–1483

    Google Scholar 

  • Chakravorty S, Saha R (2008) Simultaneous planning localization and mapping: a hybrid Bayesian/frequentist approach. Am Control Conf 2008:1226–1231. doi:10.1109/ACC.2008.4586660

    Google Scholar 

  • Chernoff H (1953) Locally optimal designs for estimating parameters. Ann Math Stat 24(4):586–602

    Article  MathSciNet  MATH  Google Scholar 

  • Choset H, KM L, S H, GA K, W B, LE K, S T (2005) Principles of robot motion: theory, algorithms, and implementations. MIT Press, Cambridge

    Google Scholar 

  • Connolly C (1985) The determination of next best views. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 432–435. doi:10.1109/ROBOT.1985.1087372

  • de Geeter J, de Schutter J, Bruyninckx H, van Brussel H, Decreton M (1998) Tolerance-weighted L-optimal experiment design for active sensing. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1670–1675

    Google Scholar 

  • Dellaert F, Kaess M (2006) Square root SAM: simultaneous localization and mapping via square root information smoothing. Int J Robot Res (IJRR) 25(12):1181–1203. doi:10.1177/0278364906072768

    Article  MATH  Google Scholar 

  • Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: part I. IEEE Robot Autom Mag 13(2):99–110. doi:10.1109/MRA.2006.1638022

    Article  Google Scholar 

  • Ehrenfeld S (1955) On the efficiency of experimental designs. Ann Math Stat 26(2):247–255

    Article  MathSciNet  MATH  Google Scholar 

  • Fairfield N, Wettergreen D (2010) Active SLAM and loop prediction with the segmented map using simplified models. In: Howard A, Iagnemma K, Kelly A (eds) Field and service robotics, springer tracts in advanced robotics, vol 62. Springer, Berlin, pp 173–182

    Google Scholar 

  • Feder HJS (1999) Simultaneous stochastic mapping and localization. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  • Feder HJS, Leonard JJ, Smith CM (1999) Adaptive mobile robot navigation and mapping. Int J Robot Res (IJRR) 18(7):650–668. doi:10.1177/02783649922066484

    Article  Google Scholar 

  • Fedorov V (1972) Theory of optimal experiments. Probability and mathematical statistics. Academic Press, Waltham

    Google Scholar 

  • Feinstein A (1958) Foundations of information theory. McGraw-Hill, New York

    MATH  Google Scholar 

  • Fox D, Burgard W, Thrun S (1998) Active Markov localization for mobile robots. Robot Auton Syst (RAS) 25(3–4):195–207. doi:10.1016/S0921-8890(98)00049-9

    Article  Google Scholar 

  • Gonzalez JP, Stentz A (2005) Planning with uncertainty in position: an optimal and efficient planner. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2435–2442

    Google Scholar 

  • Hannah J (1996) A geometric approach to determinants. Am Math Mon 103(5):401–409

    Article  MathSciNet  MATH  Google Scholar 

  • Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107. doi:10.1109/TSSC.1968.300136

    Article  Google Scholar 

  • He R, Prentice S, Roy N (2008) Planning in information space for a quadrotor helicopter in a GPS-denied environment. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 1814–1820

    Google Scholar 

  • Huang S, Kwok NM, Dissanayake G, Ha QP, Gu F (2005) Multi-step look-ahead trajectory planning in SLAM: possibility and necessity. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 1091–1096. doi:10.1109/ROBOT.2005.1570261

  • Indelman V, Carlone L, Dellaert F (2014) Planning under uncertainty in the continuous domain: a generalized belief space approach. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)

    Google Scholar 

  • Jefferies ME, Yeap W (eds) (2008) Robotics and cognitive approaches to spatial mapping, Springer tracts in advanced robotics, vol 38. Springer, Berlin

    Google Scholar 

  • Jensfelt P, Kristensen S (2001) Active global localization for a mobile robot using multiple hypothesis tracking. IEEE Trans Robot (TRO) 17(5):748–760. doi:10.1109/70.964673

    Article  Google Scholar 

  • Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in partially observable stochastic domains. Artif Intell 101(1–2):99–134. doi:10.1016/S0004-3702(98)00023-X

    Article  MathSciNet  MATH  Google Scholar 

  • Kaess M, Ranganathan A, Dellaert F (2008) iSAM: incremental smoothing and mapping. IEEE Trans Robot (TRO) 24(6):1365–1378

    Article  Google Scholar 

  • Kiefer J (1974) General equivalence theory for optimum designs (approximate theory). Ann Stat 2(5):849–879

    Article  MathSciNet  MATH  Google Scholar 

  • Kim A, Eustice RM (2013) Perception-driven navigation: active visual SLAM for robotic area coverage. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 3196–3203. doi:10.1109/ICRA.2013.6631022

  • Kleinberg J (1994) The localization problem for mobile robots. In: Proceedings of the foundations of the annual symposium on computer science, pp 521–531. doi:10.1109/SFCS.1994.365739

  • Koenig S, Likhachev M (2005) Fast replanning for navigation in unknown terrain. IEEE Trans Robot (TRO) 21(3):354–363. doi:10.1109/TRO.2004.838026

    Article  Google Scholar 

  • Konolige K, Agrawal M (2008) FrameSLAM: from bundle adjustment to real-time visual mapping. IEEE Trans Robot (TRO) 24(5):1066–1077

    Article  Google Scholar 

  • Krause A, Leskovec J, Guestrin C, VanBriesen J, Faloutsos C (2008) Efficient sensor placement optimization for securing large water distribution networks. J Water Resour Plan Manag 134(6):516–526

    Article  Google Scholar 

  • Krause A, Rajagopal R, Gupta A, Guestrin C (2011) Simultaneous optimization of sensor placements and balanced schedules. IEEE Trans Autom Control 56(10):2390–2405

    Article  MathSciNet  Google Scholar 

  • Kummerle R, Grisetti G, Strasdat H, Konolige K, Burgard W (2011) G2o: a general framework for graph optimization. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 3607–3613. doi:10.1109/ICRA.2011.5979949

  • Lambert A, Gruyer D (2003) Safe path planning in an uncertain-configuration space. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 4185–4190

    Google Scholar 

  • Laumond JP (1998) Robot motion planning and control. Springer, Berlin

    Book  Google Scholar 

  • Lefebvre T, Bruyninckx H, De Schutter J (2005) Task planning with active sensing for autonomous compliant motion. Int J Robot Res (IJRR) 24(1):61–81

    Article  Google Scholar 

  • Leung C, Huang S, Dissanayake G (2006a) Active SLAM using model predictive control and attractor based exploration. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5026–5031. doi:10.1109/IROS.2006.282530

  • Leung C, Huang S, Kwok N, Dissanayake G (2006b) Planning under uncertainty using model predictive control for information gathering. Robot Auton Syst (RAS) 54(11):898–910. doi:10.1016/j.robot.2006.05.008

  • Makarenko A, Williams SB, Bourgault F, Durrant-Whyte HF (2002) An experiment in integrated exploration. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 534–539. doi:10.1109/IRDS.2002.1041445

  • Manyika J, Durrant-Whyte H (1995) Data fusion and sensor management: a decentralized information-theoretic approach. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  • Martinez-Cantin R, de Freitas N, Brochu E, Castellanos J, Doucet A (2009) A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Auton Robot (AR) 27(2):93–103. doi:10.1007/s10514-009-9130-2

    Article  Google Scholar 

  • Massios NA, Fisher RB (1998) A best next view selection algorithm incorporating a quality criterion. In: Carter JN, Nixon MS (eds) Proceedings of the british machine conference (BMVC), British Machine Vision Association

    Google Scholar 

  • Mei C, Sibley G, Cummins M, Newman P, Reid I (2011) RSLAM: a system for large-scale mapping in constant-time using stereo. Int J Comput Vis 94:198–214. doi:10.1007/s11263-010-0361-7

    Article  Google Scholar 

  • Mihaylova L, De Schutter J, Bruyninckx H (2002) A multisine approach for trajectory optimization based on information gain. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 661–666

    Google Scholar 

  • Mihaylova L, Lefebvre T, Bruyninckx H, Gadeyne K, De Schutter J (2003) A comparison of decision making criteria and optimization methods for active robotic sensing. In: Numerical methods and applications, vol 2542. Lecture notes in computer science. Springer, Berlin, pp 316–324

    Google Scholar 

  • Moorehead SJ, Simmons R, Whittaker WL (2001) Autonomous exploration using multiple sources of information. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 3098–3103. doi:10.1109/ROBOT.2001.933093

  • Morari M, Lee JH (1999) Model predictive control: past, present and future. Comput Chem Eng 23(4–5):667–682. doi:10.1016/S0098-1354(98)00301-9

    Article  Google Scholar 

  • Newman P, Bosse M, Leonard J (2003) Autonomous feature-based exploration. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 1234–1240. doi:10.1109/ROBOT.2003.1241761

  • Ok K, Ansari S, Gallagher B, Sica W, Dellaert F, Stilman M (2013) Path planning with uncertainty: Voronoi uncertainty fields. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 4596–4601. doi:10.1109/ICRA.2013.6631230

  • Papadimitriou C, Tsitsiklis JN (1987) The complexity of Markov decision processes. Math Oper Res 12(3):441–450

    Article  MathSciNet  MATH  Google Scholar 

  • Pázman A (1986) Foundations of optimum experimental design. Mathematics and its applications. Springer, Berlin

    Google Scholar 

  • Pito R (1999) A solution to the next best view problem for automated surface acquisition. IEEE Trans Pattern Anal Mach Intell (PAMI) 21(10):1016–1030. doi:10.1109/34.799908

    Article  Google Scholar 

  • Prentice S, Roy N (2007) The belief roadmap: efficient planning in linear POMDPs by factoring the covariance. In: International symposium on robotics research (ISRR), Hiroshima, Japan

    Google Scholar 

  • Prentice S, Roy N (2009) The belief roadmap: efficient planning in belief space by factoring the covariance. Int J Robot Res (IJRR) 28:600–621

    Article  Google Scholar 

  • Pukelsheim F (2006) Optimal design of experiments. Classics in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Google Scholar 

  • Rawlings JB (2000) Tutorial overview of model predictive control. IEEE Control Syst 20(3):38–52. doi:10.1109/37.845037

    Article  MathSciNet  Google Scholar 

  • RAWSEEDS (2014) Robotics advancement through webpublishing of sensorial and elaborated extensive data sets (project FP6-IST-045144). http://www.rawseeds.org/rs/datasets. Accessed 15 Oct 2014

  • Reed MK, Allen PK, Stamos I (1997) Automated model acquisition from range images with view planning. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 72–77. doi:10.1109/CVPR.1997.609300

  • Rényi A (1970) Probability theory. North-Holland series in applied mathematics and mechanics. Elsevier, Amsterdam

    Google Scholar 

  • Roy N, Burgard W, Fox D, Thrun S (1999) Coastal navigation—mobile robot navigation with uncertainty in dynamic environments. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)

    Google Scholar 

  • Scott WR, Roth G, Rivest JF (2003) View planning for automated three-dimensional object reconstruction and inspection. ACM Comput Surv 35(1):64–96. doi:10.1145/641865.641868

    Article  Google Scholar 

  • Shannon C, Weaver W (1949) The mathematical theory of communication. Illinois books. University of Illinois Press, Champaign

    Google Scholar 

  • Siciliano B, Khatib O (2007) Springer handbook of robotics. Springer, Secaucus

    Google Scholar 

  • Siegwart R, Nourbakhsh IR, Scaramuzza D (2011) Introduction to autonomous mobile robots, 2nd edn. MIT Press, Boston

    Google Scholar 

  • Sim R (2004) Active exploration planning for SLAM using extended information filters. In: Proceedings of the conference on uncertainty in artificial intelligence (UAI)

    Google Scholar 

  • Sim R (2005) Stable exploration for bearings-only SLAM. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 2411–2416. doi:10.1109/ROBOT.2005.1570474

  • Smith M, Baldwin I, Churchill W, Paul R, Newman P (2009) The new college vision and laser data set. Int J Robot Res (IJRR) 28(5):595–599. doi:10.1177/0278364909103911

    Article  Google Scholar 

  • Smith R, Cheeseman P (1986) On the representation and estimation of spatial uncertainty. Int J Robot Res (IJRR) 5(4):56–68. doi:10.1177/027836498600500404

    Article  Google Scholar 

  • Stachniss C (2009) Robotic mapping and exploration, vol 55. Springer, Berlin

    Google Scholar 

  • Stachniss C, Burgard W (2003a) Exploring unknown environments with mobile robots using coverage maps. In: Proceedings of the international conference on artificial intelligence (IJCAI), pp 1127–1132

    Google Scholar 

  • Stachniss C, Burgard W (2003b) Mapping and exploration with mobile robots using coverage maps. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 476–481

    Google Scholar 

  • Stachniss C, Burgard W (2003c) Using coverage maps to represent the environment of mobile robots. In: European conference on mobile robots (ECMR), pp 59–64

    Google Scholar 

  • Stachniss C, Hahnel D, Burgard W (2004) Exploration with active loop-closing for FastSLAM. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), vol 2, pp 1505–1510. doi:10.1109/IROS.2004.1389609

  • Stachniss C, Grisetti G, Burgard W (2005) Information gain-based exploration using Rao-Blackwellized particle filters. In: Proceedings of robotics: science and systems conference (RSS), Cambridge, MA, USA

    Google Scholar 

  • Stentz A (1995) The focussed D* algorithm for real-time replanning. In: International joint conference on artificial intelligence (IJCAI)

    Google Scholar 

  • Thrun S (1995) Exploration in active learning. Handbook of brain science and neural networks. MIT Press, Boston

    Google Scholar 

  • Thrun S, Möller K (1992) Active exploration in dynamic environments. In: Moody J, Hanson S, Lippmann R (eds) Advances in neural information processing systems, vol 4. Morgan-Kaufmann, San Mateo, pp 531–538

    Google Scholar 

  • Thrun S, Thayer S, Whittaker W, Baker C, Burgard W, Ferguson D, Hahnel D, Montemerlo D, Morris A, Omohundro Z, Reverte C, W W (2004) Autonomous exploration and mapping of abandoned mines. IEEE Robot Autom Mag 11(4):79–91. doi:10.1109/MRA.2004.1371614

  • Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Boston

    MATH  Google Scholar 

  • Valencia R, Andrade Cetto J, Porta JM (2011) Path planning in belief space with pose SLAM. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 78–83

    Google Scholar 

  • Valencia R, Vallve J, Dissanayake G, Andrade-Cetto J (2012) Active pose SLAM. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1885–1891. doi:10.1109/IROS.2012.6385637

  • Valencia R, Morta M, Andrade-Cetto J, Porta J (2013) Planning reliable paths with pose SLAM. IEEE Trans Robot (TRO) 29(4):1050–1059. doi:10.1109/TRO.2013.2257577

    Article  Google Scholar 

  • van den Berg J, Ferguson D, Kuffner J (2006) Anytime path planning and replanning in dynamic environments. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), pp 2366–2371

    Google Scholar 

  • van den Berg J, Patil S, Alterovitz R (2012) Motion planning under uncertainty using iterative local optimization in belief space. Int J Robot Res (IJRR) 31(11):1263–1278. doi:10.1177/0278364912456319

    Article  Google Scholar 

  • Wald A (1943) On the efficient design of statistical investigations. Ann Math Stat 14(2):134–140

    Article  MathSciNet  MATH  Google Scholar 

  • Yamauchi B (1997) A Frontier-based approach for autonomous exploration. In: Proceedings of IEEE international symposium on computational intelligence in robotics and automation (CIRA), IEEE, pp 146–151. doi:10.1109/CIRA.1997.613851

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Carrillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carrillo, H., Castellanos, J.A. (2015). Navigation Under Uncertainty Based on Active SLAM Concepts. In: Busoniu, L., Tamás, L. (eds) Handling Uncertainty and Networked Structure in Robot Control. Studies in Systems, Decision and Control, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-26327-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26327-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26325-0

  • Online ISBN: 978-3-319-26327-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics