Some Models for Nanosized Magnetoelectric Bodies with Surface Effects

  • A. V. NasedkinEmail author
  • V. A. Eremeyev
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 175)


The dynamic problems for piezomagnetoelectric nanosized bodies with account for damping and surface effects are considered. For these problems, we propose the new mathematical model, which generalizes the models of the elastic medium with damping in sense of the Rayleigh approach and with surface effects for the cases of piezoelectric and magnetoelectric materials . For solving these problems, the finite element approximations are discussed. A set of effective finite element schemes is examined for finding numerical solutions of weak statements for transient, harmonic, modal and static problems within the framework of modeling the piezomagnetoelectric nanosized materials with surface effects .


Piezoelectric Medium Mode Superposition Newmark Method Finite Element Equation Magnetoelectric Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Russian Science Foundation (Grant No. 15-19-10008).


  1. 1.
    H.L. Duan, J. Wang, B.L. Karihaloo, Adv. Appl. Mech. Elsevier, 42, 1 (2008)Google Scholar
  2. 2.
    J. Wang, Z. Huang, H. Duan, S. Yu, X. Feng, G. Wang, W. Zhang, T. Wang, Acta Mech. Solida Sin. 24, 52 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Javili, A. McBride, P. Steinmann, Appl. Mech. Rev. 65, 010802 (2012)CrossRefGoogle Scholar
  4. 4.
    M.E. Gurtin, A.I. Murdoch, Arch. Ration. Mech. Analysis 57(4), 291 (1975)CrossRefGoogle Scholar
  5. 5.
    C. Kim, C. Ru, P. Schiavone, Math. Mech. Solids 18(1), 59 (2013)CrossRefGoogle Scholar
  6. 6.
    H.L. Duan, J. Wang, Z.P. Huang, B.L. Karihaloo, J. Mech. Phys. Solids 53, 1574 (2005)CrossRefGoogle Scholar
  7. 7.
    H.L. Duan, J. Wang, B.L. Karihaloo, Z.P. Huang, Acta Mater. 54, 2983 (2006)CrossRefGoogle Scholar
  8. 8.
    V. Eremeyev, N. Morozov, Dokl. Phys. 55(6), 279 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Altenbach, V.A. Eremeyev, L.P. Lebedev, ZAMM 90(3), 231 (2010)CrossRefGoogle Scholar
  10. 10.
    H. Altenbach, V.A. Eremeyev, L.P. Lebedev, ZAMM 91(9), 699 (2011)CrossRefGoogle Scholar
  11. 11.
    P. Schiavone, C.Q. Ru, Int. J. Eng. Sci. 47(11), 1331 (2009)CrossRefGoogle Scholar
  12. 12.
    V.A. Eremeyev, L.P. Lebedev, Math. Mech. Solids 18(2), 204 (2013)CrossRefGoogle Scholar
  13. 13.
    G.Y. Huang, S.W. Yu, Phys. Status Solidi B 243(4), R22 (2006)CrossRefGoogle Scholar
  14. 14.
    X.H. Pan, S.W. Yu, X.Q. Feng, Sci. China: Phys. Mech. Astron. 54(4), 564 (2011)Google Scholar
  15. 15.
    Z. Yan, L.Y. Jiang, J. Phys. D Appl. Phys. 44(36), 365301 (2011)CrossRefGoogle Scholar
  16. 16.
    Z. Yan, L.Y. Jiang, J. Phys. D Appl. Phys. 45(25), 255401 (2012)CrossRefGoogle Scholar
  17. 17.
    X. Wang, X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Nano Lett. 6(12), 2768 (2006)CrossRefGoogle Scholar
  18. 18.
    Z.L. Wang, J. Song, Science 312(5771), 242 (2006)CrossRefGoogle Scholar
  19. 19.
    U. Andreaus, F. dell’Isola, M. Porfiri, J. Vibr. Control 10(5), 625 (2004)CrossRefGoogle Scholar
  20. 20.
    F. dell’Isola, M. Porfiri, S. Vidoli, Comptes Rendus—Mecanique 331(1), 69 (2003)Google Scholar
  21. 21.
    C. Maurini, F. dell’Isola, D.D. Vescovo, Mech. Syst. Signal Process. 18(5), 1243 (2004)CrossRefGoogle Scholar
  22. 22.
    H.G. Craighead, Science 290(5496), 1532 (2000)CrossRefGoogle Scholar
  23. 23.
    K.L. Ekinci, M.L. Roukes, Rev. Sci. Instrum. 76(6), 061101 (2005)CrossRefGoogle Scholar
  24. 24.
    F. Hao, D. Fang, J. Appl. Phys. 113(10), 104103 (2013)CrossRefGoogle Scholar
  25. 25.
    A.V. Nasedkin, V.A. Eremeyev, Advanced Structured Materials, 30, Surface Effects in Solid Mechanics—Models, Simulations and Applications, vol. 105, eds. by H. Altenbach, N.F. Morozov (Springer-Verlag, Berlin Heidelberg, 2013)Google Scholar
  26. 26.
    K.S. Challagulla, A.V. Georgiades, Int. J. Eng. Sci. 49, 85 (2011)CrossRefGoogle Scholar
  27. 27.
    X.Y. Lu, H. Li, B. Wang, J. Mech. Phys. Solids 59, 1966 (2011)CrossRefGoogle Scholar
  28. 28.
    C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  29. 29.
    Z.K. Zhang, A.K. Soh, Europ. J. Mech. A/Solids 24, 1054 (2005)CrossRefGoogle Scholar
  30. 30.
    M. Benzi, G.H. Golub, J. Liesen, Acta Numerica 14, 1 (2005)CrossRefGoogle Scholar
  31. 31.
    A.V. Belokon, A.V. Nasedkin, A.N. Soloviev, J. Applied Math. Mech. (PMM) 66(3), 481 (2002)CrossRefGoogle Scholar
  32. 32.
    A.V. Nasedkin, in Piezoceramic Materials and Devices, vol. 177, ed. by I.A. Parinov (Nova Science Publishers, New York, 2010)Google Scholar
  33. 33.
    K.J. Bathe, E.L. Wilson, Numerical Methods in Finite Elements Analysis (Prentice-Hall, Englewood Clifs, New Jersey, 1976)Google Scholar
  34. 34.
    O.C. Zienkewicz, K. Morgan, Finite Elements and Approximation (Wiley, New York, 1983)Google Scholar
  35. 35.
    D.A. Berlincourt, D.R. Curran, H. Jaffe, Physical Acoustics, Part A, 1, vol. 233 (Academic Press, New York, 1964)Google Scholar
  36. 36.
    O.N. Akopov, A.V. Belokon, K.A. Nadolin, A.V. Nasedkin, A.S. Skaliukh, A.N. Soloviev, Math. Model. 13(2), 51 (2001)Google Scholar
  37. 37.
    A.V. Belokon, V.A. Eremeyev, A.V. Nasedkin, A.N. Soloviev, J. Appl. Math. Mech. (PMM) 64, 367 (2000)CrossRefGoogle Scholar
  38. 38.
    A.V. Nasedkin, V.A. Eremeyev, ZAMM 94(10), 878 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.I.I. Vorovich Institute of Mathematics, Mechanics and Computer SciencesSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Otto-Von-Guericke-University at MagdeburgMagdeburgGermany
  3. 3.Southern Scientific Center of Russian Academy of SciencesRostov-on-DonRussia

Personalised recommendations