Metaheuristic Optimization in Structural Engineering

  • S. O. Degertekin
  • Zong Woo GeemEmail author
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 7)


Metaheuristic search methods have been extensively used for optimization of the structures over the past two decades. Genetic algorithms (GA), ant colony optimization (ACO), particle swarm optimization (PSO), harmony search (HS), big bang-big crunch (BB-BC), artificial bee colony algorithm (ABC) and teaching–learning-based optimization (TLBO) are the most popular metaheuristic optimization methods. The basic principle of these methods is that they make an analogy between the natural phenomena and the optimization problems. In this chapter, recently developed metaheuristic optimization methods such as self-adaptive harmony search and teaching–learning-based optimization are reviewed and the performance of these methods in the field of structural engineering are compared with each other and the other metaheuristic methods.


Metaheuristic optimization Structural engineering Truss structures 


  1. 1.
    Lamberti, L., Pappalettere, C.: Metaheuristic design optimization of skeletal structures: a review. Comput. Technol. Rev. 4, 1–32 (2011)CrossRefGoogle Scholar
  2. 2.
    Saka, M.P.: Optimum design of steel frames using stochastic search techniques based on natural phenomena: a review. In: Topping, B.H.V. (ed.) Civil engineering computations: tools and techniques, pp. 105–147. Saxe-Coburg Publications, Stirlingshire (2007)CrossRefGoogle Scholar
  3. 3.
    Dorigo, M., Maniezzo, V, Colorni, V.: An investigation of some properties of an ant algorithm. In: Proceedings of the 1992 Parallel Problem Solving from Nature Conference, Elsevier, Amsterdam, pp. 509–520 (1992)Google Scholar
  4. 4.
    Camp, C.V., Bichon, B.J., Stovall, S.P.: Design of steel frames ant colony optimization. J. Struct. Eng. ASCE. 131, 369–379 (2005)CrossRefGoogle Scholar
  5. 5.
    Camp, C.V., Bichon, B.J.: Design of space trusses using ant colony optimization. J. Struct. Eng. ASCE. 130, 741–751 (2004)CrossRefGoogle Scholar
  6. 6.
    Capriles, P.V.S., Fonseca, L.G., Barbosa, H.J.C., Lemonge, A.C.C.: Rank-based ant colony algorithms for truss weight minimization with discrete variables. Commun. Numer. Meth. En. 23, 553–575 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Serra, M., Venini, P.: On some applications of ant colony to plane truss optimization. Struct. Multidiscip. O. 32, 499–506 (2006)CrossRefGoogle Scholar
  8. 8.
    Hasancebi, O., Carbas, S., Dogan, E., Erdal, F., Saka, M.P.: Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures. Comput. Struct. 87, 284–302 (2009)CrossRefGoogle Scholar
  9. 9.
    Kaveh, A., Shojaee, S.: Optimal design of skeletal structures using ant colony optimization. Int. J. Numer. Meth. Eng. 70, 563–581 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hasancebi, O., Carbas, S., Dogan, E., Erdal, F., Saka, M.P.: Comparison of nondeterministic search techniques in the optimum design of real size steel frames. Comput. Struct. 88, 1033–1048 (2010)CrossRefGoogle Scholar
  11. 11.
    Kaveh, A., Talatahari, S.: An improved ant colony optimization for the design of planar steel frames. Eng. Struct. 32, 864–873 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76, 60–68 (2001)CrossRefGoogle Scholar
  13. 13.
    Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony search algorithm. Comput. Struct. 82, 781–798 (2004)CrossRefGoogle Scholar
  14. 14.
    Lee, K.S., Geem, Z.W., Lee, S.H., Bae, K.W.: The harmony search heuristic algorithm for discrete structural optimization. Eng. Optimiz. 37, 663–684 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Saka, M.P.: Optimum geometry design of geodesic domes using harmony search algorithm. Adv. Struct. Eng. 10, 595–606 (2007)CrossRefGoogle Scholar
  16. 16.
    Saka, M.P., Erdal, F.: Harmony search based algorithm for the optimum design of grillage systems to AISC-LRFD. Struct. Multidiscip. O. 38, 25–41 (2009)CrossRefGoogle Scholar
  17. 17.
    Degertekin, S.O.: Harmony search algorithm for optimum design of steel frame structures: a comparative study with other optimization methods. Struct. Eng. Mech. 29, 391–410 (2008)CrossRefGoogle Scholar
  18. 18.
    Degertekin, S.O.: Optimum design of steel frames using harmony search algorithm. Struct. Multidiscip. O. 36, 393–401 (2008)CrossRefGoogle Scholar
  19. 19.
    Saka, M.P.: Optimum design of steel sway frames to BS 5950 using harmony search algorithm. J. Constr. Steel Res. 65, 36–43 (2009)CrossRefGoogle Scholar
  20. 20.
    Saka, M.P., Hasancebi, O.: Adaptive harmony search algorithm for design code optimization of steel structures. Harmony search algorithms for structural design optimization. In: Geem Z.W. (ed.) Studies in computational intelligence 239, Springer-Verlag, Berlin Heidelberg, pp. 79–120 (2009)Google Scholar
  21. 21.
    Hasancebi, O., Erdal, F., Saka, M.P.: Adaptive harmony search method for structural optimization. J. Struct. Eng. ASCE. 136, 419–431 (2010)CrossRefGoogle Scholar
  22. 22.
    Lamberti, L., Pappalettere, C.: An improved harmony-search algorithm for truss structure optimization. In: Topping B.H.V., Neves L.F.C., Barros, R.C. (eds.) Proceedings of the Twelfth International Conference Civil, Structural and Environmental Engineering Computing Civil-Comp Press, Stirlingshire, Scotland (2009)Google Scholar
  23. 23.
    Degertekin, S.O.: An improved harmony search algorithms for sizing optimization of truss structures. Comput. Struct. 92–93, 229–241 (2012)CrossRefGoogle Scholar
  24. 24.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  25. 25.
    Perez, R.E., Behdinan, K.: Particle swarm approach for structural design optimization. Comput. Struct. 85, 1579–1588 (2007)CrossRefGoogle Scholar
  26. 26.
    Fourie, P., Groenwold, A.: The particle swarm optimization algorithm in size and shape optimization. Struct. Multidiscip. O. 23, 259–267 (2002)CrossRefGoogle Scholar
  27. 27.
    Schutte, J.F., Groenwold, A.: Sizing design of truss structures using particle swarms. Struct. Multidiscip. O. 25, 261–269 (2009)CrossRefGoogle Scholar
  28. 28.
    Li, L.J., Huang, Z.B., Liu, F., Wu, Q.H.: A heuristic particle swarm optimizer for optimization of pin connected structures. Comput. Struct. 85, 340–349 (2007)CrossRefGoogle Scholar
  29. 29.
    Li, L.J., Huang, Z.B., Liu, F.: A heuristic particle swarm optimization method for truss structures with discrete variables. Comput. Struct. 87, 435–443 (2009)CrossRefGoogle Scholar
  30. 30.
    Kaveh, A., Talathari, S.: A particle swarm ant colony optimization for truss structures with discrete variables. J. Constr. Steel Res. 65, 1558–1568 (2009)CrossRefGoogle Scholar
  31. 31.
    Kaveh, A., Talatahari, S.: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput. Struct. 87, 267–283 (2009)CrossRefGoogle Scholar
  32. 32.
    Erol, O.K., Eksin, I.: New optimization method: big bang-big crunch. Adv. Eng. Softw. 37, 106–111 (2006)CrossRefGoogle Scholar
  33. 33.
    Kaveh, A., Talatahari, S.: Size optimization of space trusses using big-bang big-crunch algorithm. Comput. Struct. 87, 1129–1140 (2009)CrossRefGoogle Scholar
  34. 34.
    Camp, C.V.: Design of space trusses using big bang-big crunch optimization. J. Struct. Eng. ASCE. 133, 999–1008 (2007)CrossRefGoogle Scholar
  35. 35.
    Kaveh, A., Talatahari, S.: Optimal design of Schwedler and ribbed domes via hybrid big bang-big crunch algorithm. J. Constr. Steel Res. 66, 412–419 (2010)CrossRefGoogle Scholar
  36. 36.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization, technical report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)Google Scholar
  37. 37.
    Sonmez, M.: Artificial bee colony algorithm for optimization of truss optimization. Appl. Soft Comput. 11, 2406–2418 (2011)CrossRefGoogle Scholar
  38. 38.
    Sonmez, M.: Discrete optimum design of truss structures using artificial bee colony algorithm. Struct. Multidiscip. O. 43, 85–97 (2011)CrossRefGoogle Scholar
  39. 39.
    Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comp. Aid. Des. 43, 303–315 (2011)CrossRefGoogle Scholar
  40. 40.
    Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183, 1–15 (2012)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Toğan, V.: Design of steel frames using teaching-learning based optimization. Eng. Struct. 34, 225–232 (2012)CrossRefGoogle Scholar
  42. 42.
    Degertekin, S.O., Hayalioglu, M.S.: Sizing optimization of truss structures using teaching-learning-based optimization. Comput. Struct. 119, 177–188 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Civil EngineeringDicle UniversityDiyarbakirTurkey
  2. 2.Department of Energy ITGachon UniversitySeongnamSouth Korea

Personalised recommendations