Skip to main content

Application of the Simulated Annealing Algorithm for Transport Infrastructure Planning

Part of the Modeling and Optimization in Science and Technologies book series (MOST,volume 7)

Abstract

Decisions in planning for transport infrastructure are the result of complex technical, political, and societal concerns. Its context of limited public funding and large costs require that decision making is soundly supported. When addressing real-world problems, however, it is extremely difficult to ascertain the system configuration yielding the most value. Different alternatives exist that trade-off interrelated factors governing the value of the configurations. Metaheuristics can be of assistance when solving such real-world problems. This chapter presents an application of the simulated annealing algorithm to solve an integrated approach to high-speed rail planning. The algorithm capabilities in addressing the intricacies imposed by large and complex problems are discussed.

Keywords

  • Metaheuristics
  • Simulated annealing
  • Optimization
  • Parameter calibration
  • High-speed rail modeling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-26245-1_11
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-26245-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Givoni, M., Rietveld, P.: Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region. J. Transp. Geogr. 36, 89–97 (2014). doi:10.1016/j.jtrangeo.2014.03.004

    CrossRef  Google Scholar 

  2. Brons, M., Givoni, M., Rietveld, P.: Access to railway stations and its potential in increasing rail use. Transp. Res. Part A Policy Pract. 43, 136–149 (2009). doi:10.1016/j.tra.2008.08.002

    CrossRef  Google Scholar 

  3. Givoni, M., Rietveld, P.: The access journey to the railway station and its role in passengers’ satisfaction with rail travel. Transp. Policy 14, 357–365 (2007). doi:10.1016/j.tranpol.2007.04.004

    CrossRef  Google Scholar 

  4. Repolho, H.M., Antunes, A.P., Church, R.L.: Optimal location of railway stations: the Lisbon-Porto high-speed rail line. Transp. Sci. 47, 330–343 (2013). doi:10.1287/trsc.1120.0425

    CrossRef  Google Scholar 

  5. Vickerman, R.: High-speed rail in Europe: experience and issues for future development. Ann. Reg. Sci. 31, 21–38 (1997). doi:10.1007/s001680050037

    CrossRef  Google Scholar 

  6. Levinson, D.M.: Accessibility impacts of high-speed rail. J. Transp. Geogr. 22, 288–291 (2012). doi:10.1016/j.jtrangeo.2012.01.029

    CrossRef  Google Scholar 

  7. EC: Commission Decision of 20 December 2007 concerning a technical specification for interoperability relating to the infrastructure sub-system of the trans-European high-speed rail system. Off. J. Eur. Union (2008)

    Google Scholar 

  8. CEN: Railway application—track alignment design parameters—track gauges 1435 mm and wider—Part 1: plain line. ENV 13803-1, CEN—European Committee for Standardization (2002)

    Google Scholar 

  9. RTRI: Design Standards for Railway Structures—Displacement Limits (2007)

    Google Scholar 

  10. Levinson, D., Gillen, D., Kanafani, A., Mathieu, J.: The Full Cost of Intercity Transportation—A Comparison of High Speed Rail, Air And Highway Transportation In California (1996)

    Google Scholar 

  11. Levinson, D., Mathieu, J.M., Gillen, D., Kanafani, A.: The full cost of high-speed rail: an engineering approach. Ann. Reg. Sci. 31, 189–215 (1997). doi:10.1007/s001680050045

    CrossRef  Google Scholar 

  12. Campos, J., de Rus, G.: Some stylized facts about high-speed rail: a review of HSR experiences around the world. Transp. Policy 16, 19–28 (2009). doi:10.1016/j.tranpol.2009.02.008

    CrossRef  Google Scholar 

  13. Jong, J.C.: Optimizing highway alignments with genetic algorithms. Ph.D. Dissertation. Department of Civil and Environmental Engineering (1998)

    Google Scholar 

  14. Jong, J.C., Jha, M.K., Schonfeld, P.: Preliminary highway design with genetic algorithms and geographic information systems. Comput. Civ. Infrastruct. Eng. 15, 261–271 (2000)

    CrossRef  Google Scholar 

  15. Cheng, J.F., Lee, Y.S.: Model for three-dimensional highway alignment. J. Transp. Eng. 132, 913–920 (2006). doi:10.1061/(asce)0733-947x(2006)132:12(913)

    CrossRef  Google Scholar 

  16. Lee, Y., Tsou, Y.R., Liu, H.L.: Optimization method forhighway horizontal alignment design. J. Transp. Eng. 135, 217–224 (2009). doi:10.1061/(ASCE)0733-947X(2009)135:4(217)

    CrossRef  Google Scholar 

  17. Jha, M.K.: Criteria-based decision support system for selecting highway alignments. J. Transp. Eng. 129, 33–41 (2003). doi:10.1061/(asce)0733-947x(2003)129:1(33)

    CrossRef  Google Scholar 

  18. Jha, M.K., Schonfeld, P.: A highway alignment optimization model using geographic information systems. Transp. Res. Part A Policy Pract. 38, 455–481 (2004). doi:10.1016/j.tra.2004.04.001

    CrossRef  Google Scholar 

  19. Kim, E., Jha, M.K., Schonfeld, P., Kim, H.S.: Highway alignment optimization incorporating bridges and tunnels. J. Transp. Eng. 133, 71–81 (2007). doi:10.1061/(asce)0733-947x(2007)133:2(71)

    CrossRef  Google Scholar 

  20. Fwa, T.F., Chan, W.T., Sim, Y.P.: Optimal vertical alignment analysis for highway design. J. Transp. Eng. 128, 395–402 (2002). doi:10.1061/(asce)0733-947x(2002)128:5(395)

    CrossRef  Google Scholar 

  21. Kim, E., Jha, M.K., Schonfeld, P.: Intersection construction cost functions for alignment optimization. J. Transp. Eng. 130, 194–203 (2004). doi:10.1061/(asce)0733-947x(2004)130:2(194)

    CrossRef  Google Scholar 

  22. Gipps, P.G., Gu, K.Q., Held, A., Barnett, G.: New technologies for transport route selection. Transp. Res. Part C Emerg. Technol. 9, 135–154 (2001). doi:10.1016/S0968-090X(00)00040-1

    CrossRef  Google Scholar 

  23. Jong, J.C., Schonfeld, P.: Cost functions for optimizing highway alignments. Transp. Res. Rec. J. Transp. Res. Board 1959, 58–67 (1999). doi:10.3141/1659-08

    CrossRef  Google Scholar 

  24. Parker, N.A.: Rural highway route corridor selection. Transp. Plan Technol. 3, 247–256 (1977). doi:10.1080/03081067708717111

    CrossRef  Google Scholar 

  25. Trietsch, D.: A family of methods for preliminary highway alignment. Transp. Sci. 21, 17–25 (1987)

    CrossRef  Google Scholar 

  26. Chew, E.P., Goh, C.J., Fwa, T.F.: Simultaneous optimization of horizontal and vertical alignments for highways. Transp. Res. Part B Methodol. 23, 315–329 (1989). doi:10.1016/0191-2615(89)90008-8

    CrossRef  Google Scholar 

  27. Kang, M.W., Jha, M.K., Schonfeld, P.: Applicability of highway alignment optimization models. Transp. Res. Part C Emerg. Technol. 21, 257–286 (2012). doi:10.1016/j.trc.2011.09.006

    CrossRef  Google Scholar 

  28. Shafahi, Y., Bagherian, M.: A customized particle swarm method to solve highway alignment optimization problem. Comput. Civ. Infrastruct. Eng. 28, 52–67 (2013). doi:10.1111/j.1467-8667.2012.00769.x

    CrossRef  Google Scholar 

  29. Angulo, E., Castillo, E., Garcia-Rodenas, R., Sanchez-Vizcaino, J.: Determining highway corridors. J. Transp. Eng. 138, 557–570 (2012). doi:10.1061/(ASCE)TE.1943-5436.0000361

    CrossRef  Google Scholar 

  30. Costa, A.L., Cunha, C., Coelho, P.A.L.F., Einstein, H.H.: Solving high-speed rail planning with the simulated annealing algorithm. J. Transp. Eng. 139, 635–642 (2013). doi:10.1061/(ASCE)TE.1943-5436.0000542

    Google Scholar 

  31. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., et al.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    CrossRef  Google Scholar 

  32. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Google Scholar 

  33. Cerny, V.: Thermodynamical approach to the traveling salesman problem—an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)

    CrossRef  MathSciNet  MATH  Google Scholar 

  34. Aarts, E., Korst, J., Van Laarhoven, P.J.M.: Simulated annealing. In: Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, 1st edn., pp 91–120. Wiley, New York (1997)

    Google Scholar 

  35. Dekkers, A., Aarts, E.: Global optimization and simulated annealing. Math. Program. 50, 367–393 (1991)

    CrossRef  MathSciNet  MATH  Google Scholar 

  36. Johnson, D.S., Aragon, C.R., MCGeoch, L.A., Schevon C.: Optimization by simulated annealing—an experimental evaluation. Part 1. Graph Partit. Oper. Res. 37, 865–892 (1989) doi:10.1287/opre.37.6.865

    Google Scholar 

  37. Osman, I.H., Laporte, G.: Metaheuristics: a bibliography. Ann. Oper. Res. 63, 513–623 (1996)

    CrossRef  MATH  Google Scholar 

  38. Bertsimas, D., Nohadani, O.: Robust optimization with simulated annealing. J. Glob. Optim. 48, 323–334 (2010). doi:10.1007/s10898-009-9496-x

    CrossRef  MathSciNet  MATH  Google Scholar 

  39. Jilla, C.D., Miller, D.W.: Assessing the performance of a heuristic simulated annealing algorithm for the design of distributed satellite systems. Acta Astronaut. 48, 529–543 (2001)

    CrossRef  Google Scholar 

  40. Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34, 975–986 (1984). doi:10.1007/BF01009452

    CrossRef  MathSciNet  Google Scholar 

  41. APA: Environmental Atlas. In: Port. Environ. Agency (2012). http://sniamb.apambiente.pt/webatlas/

  42. Cunha, M.C.: On solving aquifer management problems with simulated annealing algorithms. Water Resour. Manag. 13, 153–169 (1999)

    CrossRef  Google Scholar 

  43. Cunha, M.C., Sousa, J.J.O.: Hydraulic infrastructures design using simulated annealing. J. Infrastruct. Syst. 7, 32–39 (2001)

    CrossRef  Google Scholar 

  44. Maier, H.R., Kapelan, Z., Kasprzyk, J., et al.: Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions. Environ. Model Softw. 62, 271–299 (2014). doi:10.1016/j.envsoft.2014.09.013

    CrossRef  Google Scholar 

  45. Smith, T., Husbands, P., O’Shea, M.: Fitness landscapes and evolvability. Evol. Comput. 10, 1–34 (2002). doi:10.1162/106365602317301754

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of Fundação para a Ciência e Tecnologia (FCT) through doctoral grant (SFRH/BD/43012/2008) and the access to preliminary studies provided by former Rede Ferróviaria de Alta Velocidade, S.A. (RAVE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Conceição Cunha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Costa, A.L., Cunha, M.C., Coelho, P.A.L.F., Einstein, H.H. (2016). Application of the Simulated Annealing Algorithm for Transport Infrastructure Planning. In: Yang, XS., Bekdaş, G., Nigdeli, S. (eds) Metaheuristics and Optimization in Civil Engineering. Modeling and Optimization in Science and Technologies, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-26245-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26245-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26243-7

  • Online ISBN: 978-3-319-26245-1

  • eBook Packages: EngineeringEngineering (R0)