Abstract
Decisions in planning for transport infrastructure are the result of complex technical, political, and societal concerns. Its context of limited public funding and large costs require that decision making is soundly supported. When addressing real-world problems, however, it is extremely difficult to ascertain the system configuration yielding the most value. Different alternatives exist that trade-off interrelated factors governing the value of the configurations. Metaheuristics can be of assistance when solving such real-world problems. This chapter presents an application of the simulated annealing algorithm to solve an integrated approach to high-speed rail planning. The algorithm capabilities in addressing the intricacies imposed by large and complex problems are discussed.
Keywords
- Metaheuristics
- Simulated annealing
- Optimization
- Parameter calibration
- High-speed rail modeling
This is a preview of subscription content, access via your institution.
Buying options





References
Givoni, M., Rietveld, P.: Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region. J. Transp. Geogr. 36, 89–97 (2014). doi:10.1016/j.jtrangeo.2014.03.004
Brons, M., Givoni, M., Rietveld, P.: Access to railway stations and its potential in increasing rail use. Transp. Res. Part A Policy Pract. 43, 136–149 (2009). doi:10.1016/j.tra.2008.08.002
Givoni, M., Rietveld, P.: The access journey to the railway station and its role in passengers’ satisfaction with rail travel. Transp. Policy 14, 357–365 (2007). doi:10.1016/j.tranpol.2007.04.004
Repolho, H.M., Antunes, A.P., Church, R.L.: Optimal location of railway stations: the Lisbon-Porto high-speed rail line. Transp. Sci. 47, 330–343 (2013). doi:10.1287/trsc.1120.0425
Vickerman, R.: High-speed rail in Europe: experience and issues for future development. Ann. Reg. Sci. 31, 21–38 (1997). doi:10.1007/s001680050037
Levinson, D.M.: Accessibility impacts of high-speed rail. J. Transp. Geogr. 22, 288–291 (2012). doi:10.1016/j.jtrangeo.2012.01.029
EC: Commission Decision of 20 December 2007 concerning a technical specification for interoperability relating to the infrastructure sub-system of the trans-European high-speed rail system. Off. J. Eur. Union (2008)
CEN: Railway application—track alignment design parameters—track gauges 1435 mm and wider—Part 1: plain line. ENV 13803-1, CEN—European Committee for Standardization (2002)
RTRI: Design Standards for Railway Structures—Displacement Limits (2007)
Levinson, D., Gillen, D., Kanafani, A., Mathieu, J.: The Full Cost of Intercity Transportation—A Comparison of High Speed Rail, Air And Highway Transportation In California (1996)
Levinson, D., Mathieu, J.M., Gillen, D., Kanafani, A.: The full cost of high-speed rail: an engineering approach. Ann. Reg. Sci. 31, 189–215 (1997). doi:10.1007/s001680050045
Campos, J., de Rus, G.: Some stylized facts about high-speed rail: a review of HSR experiences around the world. Transp. Policy 16, 19–28 (2009). doi:10.1016/j.tranpol.2009.02.008
Jong, J.C.: Optimizing highway alignments with genetic algorithms. Ph.D. Dissertation. Department of Civil and Environmental Engineering (1998)
Jong, J.C., Jha, M.K., Schonfeld, P.: Preliminary highway design with genetic algorithms and geographic information systems. Comput. Civ. Infrastruct. Eng. 15, 261–271 (2000)
Cheng, J.F., Lee, Y.S.: Model for three-dimensional highway alignment. J. Transp. Eng. 132, 913–920 (2006). doi:10.1061/(asce)0733-947x(2006)132:12(913)
Lee, Y., Tsou, Y.R., Liu, H.L.: Optimization method forhighway horizontal alignment design. J. Transp. Eng. 135, 217–224 (2009). doi:10.1061/(ASCE)0733-947X(2009)135:4(217)
Jha, M.K.: Criteria-based decision support system for selecting highway alignments. J. Transp. Eng. 129, 33–41 (2003). doi:10.1061/(asce)0733-947x(2003)129:1(33)
Jha, M.K., Schonfeld, P.: A highway alignment optimization model using geographic information systems. Transp. Res. Part A Policy Pract. 38, 455–481 (2004). doi:10.1016/j.tra.2004.04.001
Kim, E., Jha, M.K., Schonfeld, P., Kim, H.S.: Highway alignment optimization incorporating bridges and tunnels. J. Transp. Eng. 133, 71–81 (2007). doi:10.1061/(asce)0733-947x(2007)133:2(71)
Fwa, T.F., Chan, W.T., Sim, Y.P.: Optimal vertical alignment analysis for highway design. J. Transp. Eng. 128, 395–402 (2002). doi:10.1061/(asce)0733-947x(2002)128:5(395)
Kim, E., Jha, M.K., Schonfeld, P.: Intersection construction cost functions for alignment optimization. J. Transp. Eng. 130, 194–203 (2004). doi:10.1061/(asce)0733-947x(2004)130:2(194)
Gipps, P.G., Gu, K.Q., Held, A., Barnett, G.: New technologies for transport route selection. Transp. Res. Part C Emerg. Technol. 9, 135–154 (2001). doi:10.1016/S0968-090X(00)00040-1
Jong, J.C., Schonfeld, P.: Cost functions for optimizing highway alignments. Transp. Res. Rec. J. Transp. Res. Board 1959, 58–67 (1999). doi:10.3141/1659-08
Parker, N.A.: Rural highway route corridor selection. Transp. Plan Technol. 3, 247–256 (1977). doi:10.1080/03081067708717111
Trietsch, D.: A family of methods for preliminary highway alignment. Transp. Sci. 21, 17–25 (1987)
Chew, E.P., Goh, C.J., Fwa, T.F.: Simultaneous optimization of horizontal and vertical alignments for highways. Transp. Res. Part B Methodol. 23, 315–329 (1989). doi:10.1016/0191-2615(89)90008-8
Kang, M.W., Jha, M.K., Schonfeld, P.: Applicability of highway alignment optimization models. Transp. Res. Part C Emerg. Technol. 21, 257–286 (2012). doi:10.1016/j.trc.2011.09.006
Shafahi, Y., Bagherian, M.: A customized particle swarm method to solve highway alignment optimization problem. Comput. Civ. Infrastruct. Eng. 28, 52–67 (2013). doi:10.1111/j.1467-8667.2012.00769.x
Angulo, E., Castillo, E., Garcia-Rodenas, R., Sanchez-Vizcaino, J.: Determining highway corridors. J. Transp. Eng. 138, 557–570 (2012). doi:10.1061/(ASCE)TE.1943-5436.0000361
Costa, A.L., Cunha, C., Coelho, P.A.L.F., Einstein, H.H.: Solving high-speed rail planning with the simulated annealing algorithm. J. Transp. Eng. 139, 635–642 (2013). doi:10.1061/(ASCE)TE.1943-5436.0000542
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., et al.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Cerny, V.: Thermodynamical approach to the traveling salesman problem—an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)
Aarts, E., Korst, J., Van Laarhoven, P.J.M.: Simulated annealing. In: Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, 1st edn., pp 91–120. Wiley, New York (1997)
Dekkers, A., Aarts, E.: Global optimization and simulated annealing. Math. Program. 50, 367–393 (1991)
Johnson, D.S., Aragon, C.R., MCGeoch, L.A., Schevon C.: Optimization by simulated annealing—an experimental evaluation. Part 1. Graph Partit. Oper. Res. 37, 865–892 (1989) doi:10.1287/opre.37.6.865
Osman, I.H., Laporte, G.: Metaheuristics: a bibliography. Ann. Oper. Res. 63, 513–623 (1996)
Bertsimas, D., Nohadani, O.: Robust optimization with simulated annealing. J. Glob. Optim. 48, 323–334 (2010). doi:10.1007/s10898-009-9496-x
Jilla, C.D., Miller, D.W.: Assessing the performance of a heuristic simulated annealing algorithm for the design of distributed satellite systems. Acta Astronaut. 48, 529–543 (2001)
Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34, 975–986 (1984). doi:10.1007/BF01009452
APA: Environmental Atlas. In: Port. Environ. Agency (2012). http://sniamb.apambiente.pt/webatlas/
Cunha, M.C.: On solving aquifer management problems with simulated annealing algorithms. Water Resour. Manag. 13, 153–169 (1999)
Cunha, M.C., Sousa, J.J.O.: Hydraulic infrastructures design using simulated annealing. J. Infrastruct. Syst. 7, 32–39 (2001)
Maier, H.R., Kapelan, Z., Kasprzyk, J., et al.: Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions. Environ. Model Softw. 62, 271–299 (2014). doi:10.1016/j.envsoft.2014.09.013
Smith, T., Husbands, P., O’Shea, M.: Fitness landscapes and evolvability. Evol. Comput. 10, 1–34 (2002). doi:10.1162/106365602317301754
Acknowledgments
The authors would like to acknowledge the financial support of Fundação para a Ciência e Tecnologia (FCT) through doctoral grant (SFRH/BD/43012/2008) and the access to preliminary studies provided by former Rede Ferróviaria de Alta Velocidade, S.A. (RAVE).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Costa, A.L., Cunha, M.C., Coelho, P.A.L.F., Einstein, H.H. (2016). Application of the Simulated Annealing Algorithm for Transport Infrastructure Planning. In: Yang, XS., Bekdaş, G., Nigdeli, S. (eds) Metaheuristics and Optimization in Civil Engineering. Modeling and Optimization in Science and Technologies, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-26245-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-26245-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26243-7
Online ISBN: 978-3-319-26245-1
eBook Packages: EngineeringEngineering (R0)