Application of the Simulated Annealing Algorithm for Transport Infrastructure Planning

  • Ana Laura Costa
  • Maria Conceição CunhaEmail author
  • Paulo A. L. F. Coelho
  • Herbert H. Einstein
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 7)


Decisions in planning for transport infrastructure are the result of complex technical, political, and societal concerns. Its context of limited public funding and large costs require that decision making is soundly supported. When addressing real-world problems, however, it is extremely difficult to ascertain the system configuration yielding the most value. Different alternatives exist that trade-off interrelated factors governing the value of the configurations. Metaheuristics can be of assistance when solving such real-world problems. This chapter presents an application of the simulated annealing algorithm to solve an integrated approach to high-speed rail planning. The algorithm capabilities in addressing the intricacies imposed by large and complex problems are discussed.


Metaheuristics Simulated annealing Optimization Parameter calibration High-speed rail modeling 



The authors would like to acknowledge the financial support of Fundação para a Ciência e Tecnologia (FCT) through doctoral grant (SFRH/BD/43012/2008) and the access to preliminary studies provided by former Rede Ferróviaria de Alta Velocidade, S.A. (RAVE).


  1. 1.
    Givoni, M., Rietveld, P.: Do cities deserve more railway stations? The choice of a departure railway station in a multiple-station region. J. Transp. Geogr. 36, 89–97 (2014). doi: 10.1016/j.jtrangeo.2014.03.004 CrossRefGoogle Scholar
  2. 2.
    Brons, M., Givoni, M., Rietveld, P.: Access to railway stations and its potential in increasing rail use. Transp. Res. Part A Policy Pract. 43, 136–149 (2009). doi: 10.1016/j.tra.2008.08.002 CrossRefGoogle Scholar
  3. 3.
    Givoni, M., Rietveld, P.: The access journey to the railway station and its role in passengers’ satisfaction with rail travel. Transp. Policy 14, 357–365 (2007). doi: 10.1016/j.tranpol.2007.04.004 CrossRefGoogle Scholar
  4. 4.
    Repolho, H.M., Antunes, A.P., Church, R.L.: Optimal location of railway stations: the Lisbon-Porto high-speed rail line. Transp. Sci. 47, 330–343 (2013). doi: 10.1287/trsc.1120.0425 CrossRefGoogle Scholar
  5. 5.
    Vickerman, R.: High-speed rail in Europe: experience and issues for future development. Ann. Reg. Sci. 31, 21–38 (1997). doi: 10.1007/s001680050037 CrossRefGoogle Scholar
  6. 6.
    Levinson, D.M.: Accessibility impacts of high-speed rail. J. Transp. Geogr. 22, 288–291 (2012). doi: 10.1016/j.jtrangeo.2012.01.029 CrossRefGoogle Scholar
  7. 7.
    EC: Commission Decision of 20 December 2007 concerning a technical specification for interoperability relating to the infrastructure sub-system of the trans-European high-speed rail system. Off. J. Eur. Union (2008)Google Scholar
  8. 8.
    CEN: Railway application—track alignment design parameters—track gauges 1435 mm and wider—Part 1: plain line. ENV 13803-1, CEN—European Committee for Standardization (2002)Google Scholar
  9. 9.
    RTRI: Design Standards for Railway Structures—Displacement Limits (2007)Google Scholar
  10. 10.
    Levinson, D., Gillen, D., Kanafani, A., Mathieu, J.: The Full Cost of Intercity Transportation—A Comparison of High Speed Rail, Air And Highway Transportation In California (1996)Google Scholar
  11. 11.
    Levinson, D., Mathieu, J.M., Gillen, D., Kanafani, A.: The full cost of high-speed rail: an engineering approach. Ann. Reg. Sci. 31, 189–215 (1997). doi: 10.1007/s001680050045 CrossRefGoogle Scholar
  12. 12.
    Campos, J., de Rus, G.: Some stylized facts about high-speed rail: a review of HSR experiences around the world. Transp. Policy 16, 19–28 (2009). doi: 10.1016/j.tranpol.2009.02.008 CrossRefGoogle Scholar
  13. 13.
    Jong, J.C.: Optimizing highway alignments with genetic algorithms. Ph.D. Dissertation. Department of Civil and Environmental Engineering (1998)Google Scholar
  14. 14.
    Jong, J.C., Jha, M.K., Schonfeld, P.: Preliminary highway design with genetic algorithms and geographic information systems. Comput. Civ. Infrastruct. Eng. 15, 261–271 (2000)CrossRefGoogle Scholar
  15. 15.
    Cheng, J.F., Lee, Y.S.: Model for three-dimensional highway alignment. J. Transp. Eng. 132, 913–920 (2006). doi: 10.1061/(asce)0733-947x(2006)132:12(913) CrossRefGoogle Scholar
  16. 16.
    Lee, Y., Tsou, Y.R., Liu, H.L.: Optimization method forhighway horizontal alignment design. J. Transp. Eng. 135, 217–224 (2009). doi: 10.1061/(ASCE)0733-947X(2009)135:4(217) CrossRefGoogle Scholar
  17. 17.
    Jha, M.K.: Criteria-based decision support system for selecting highway alignments. J. Transp. Eng. 129, 33–41 (2003). doi: 10.1061/(asce)0733-947x(2003)129:1(33) CrossRefGoogle Scholar
  18. 18.
    Jha, M.K., Schonfeld, P.: A highway alignment optimization model using geographic information systems. Transp. Res. Part A Policy Pract. 38, 455–481 (2004). doi: 10.1016/j.tra.2004.04.001 CrossRefGoogle Scholar
  19. 19.
    Kim, E., Jha, M.K., Schonfeld, P., Kim, H.S.: Highway alignment optimization incorporating bridges and tunnels. J. Transp. Eng. 133, 71–81 (2007). doi: 10.1061/(asce)0733-947x(2007)133:2(71) CrossRefGoogle Scholar
  20. 20.
    Fwa, T.F., Chan, W.T., Sim, Y.P.: Optimal vertical alignment analysis for highway design. J. Transp. Eng. 128, 395–402 (2002). doi: 10.1061/(asce)0733-947x(2002)128:5(395) CrossRefGoogle Scholar
  21. 21.
    Kim, E., Jha, M.K., Schonfeld, P.: Intersection construction cost functions for alignment optimization. J. Transp. Eng. 130, 194–203 (2004). doi: 10.1061/(asce)0733-947x(2004)130:2(194) CrossRefGoogle Scholar
  22. 22.
    Gipps, P.G., Gu, K.Q., Held, A., Barnett, G.: New technologies for transport route selection. Transp. Res. Part C Emerg. Technol. 9, 135–154 (2001). doi: 10.1016/S0968-090X(00)00040-1 CrossRefGoogle Scholar
  23. 23.
    Jong, J.C., Schonfeld, P.: Cost functions for optimizing highway alignments. Transp. Res. Rec. J. Transp. Res. Board 1959, 58–67 (1999). doi: 10.3141/1659-08 CrossRefGoogle Scholar
  24. 24.
    Parker, N.A.: Rural highway route corridor selection. Transp. Plan Technol. 3, 247–256 (1977). doi: 10.1080/03081067708717111 CrossRefGoogle Scholar
  25. 25.
    Trietsch, D.: A family of methods for preliminary highway alignment. Transp. Sci. 21, 17–25 (1987)CrossRefGoogle Scholar
  26. 26.
    Chew, E.P., Goh, C.J., Fwa, T.F.: Simultaneous optimization of horizontal and vertical alignments for highways. Transp. Res. Part B Methodol. 23, 315–329 (1989). doi: 10.1016/0191-2615(89)90008-8 CrossRefGoogle Scholar
  27. 27.
    Kang, M.W., Jha, M.K., Schonfeld, P.: Applicability of highway alignment optimization models. Transp. Res. Part C Emerg. Technol. 21, 257–286 (2012). doi: 10.1016/j.trc.2011.09.006 CrossRefGoogle Scholar
  28. 28.
    Shafahi, Y., Bagherian, M.: A customized particle swarm method to solve highway alignment optimization problem. Comput. Civ. Infrastruct. Eng. 28, 52–67 (2013). doi: 10.1111/j.1467-8667.2012.00769.x CrossRefGoogle Scholar
  29. 29.
    Angulo, E., Castillo, E., Garcia-Rodenas, R., Sanchez-Vizcaino, J.: Determining highway corridors. J. Transp. Eng. 138, 557–570 (2012). doi: 10.1061/(ASCE)TE.1943-5436.0000361 CrossRefGoogle Scholar
  30. 30.
    Costa, A.L., Cunha, C., Coelho, P.A.L.F., Einstein, H.H.: Solving high-speed rail planning with the simulated annealing algorithm. J. Transp. Eng. 139, 635–642 (2013). doi: 10.1061/(ASCE)TE.1943-5436.0000542 Google Scholar
  31. 31.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., et al.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  32. 32.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)Google Scholar
  33. 33.
    Cerny, V.: Thermodynamical approach to the traveling salesman problem—an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Aarts, E., Korst, J., Van Laarhoven, P.J.M.: Simulated annealing. In: Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, 1st edn., pp 91–120. Wiley, New York (1997)Google Scholar
  35. 35.
    Dekkers, A., Aarts, E.: Global optimization and simulated annealing. Math. Program. 50, 367–393 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Johnson, D.S., Aragon, C.R., MCGeoch, L.A., Schevon C.: Optimization by simulated annealing—an experimental evaluation. Part 1. Graph Partit. Oper. Res. 37, 865–892 (1989) doi: 10.1287/opre.37.6.865 Google Scholar
  37. 37.
    Osman, I.H., Laporte, G.: Metaheuristics: a bibliography. Ann. Oper. Res. 63, 513–623 (1996)CrossRefzbMATHGoogle Scholar
  38. 38.
    Bertsimas, D., Nohadani, O.: Robust optimization with simulated annealing. J. Glob. Optim. 48, 323–334 (2010). doi: 10.1007/s10898-009-9496-x MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Jilla, C.D., Miller, D.W.: Assessing the performance of a heuristic simulated annealing algorithm for the design of distributed satellite systems. Acta Astronaut. 48, 529–543 (2001)CrossRefGoogle Scholar
  40. 40.
    Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34, 975–986 (1984). doi: 10.1007/BF01009452 MathSciNetCrossRefGoogle Scholar
  41. 41.
    APA: Environmental Atlas. In: Port. Environ. Agency (2012).
  42. 42.
    Cunha, M.C.: On solving aquifer management problems with simulated annealing algorithms. Water Resour. Manag. 13, 153–169 (1999)CrossRefGoogle Scholar
  43. 43.
    Cunha, M.C., Sousa, J.J.O.: Hydraulic infrastructures design using simulated annealing. J. Infrastruct. Syst. 7, 32–39 (2001)CrossRefGoogle Scholar
  44. 44.
    Maier, H.R., Kapelan, Z., Kasprzyk, J., et al.: Evolutionary algorithms and other metaheuristics in water resources: current status, research challenges and future directions. Environ. Model Softw. 62, 271–299 (2014). doi: 10.1016/j.envsoft.2014.09.013 CrossRefGoogle Scholar
  45. 45.
    Smith, T., Husbands, P., O’Shea, M.: Fitness landscapes and evolvability. Evol. Comput. 10, 1–34 (2002). doi: 10.1162/106365602317301754 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ana Laura Costa
    • 1
  • Maria Conceição Cunha
    • 1
    Email author
  • Paulo A. L. F. Coelho
    • 1
  • Herbert H. Einstein
    • 2
  1. 1.Department of Civil EngineeringUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations