Review and Applications of Metaheuristic Algorithms in Civil Engineering

  • Xin-She YangEmail author
  • Gebrail Bekdaş
  • Sinan Melih Nigdeli
Part of the Modeling and Optimization in Science and Technologies book series (MOST, volume 7)


Many design optimization problems in civil engineering are highly nonlinear and can be challenging to solve using traditional methods. In many cases, metaheurisitc algorithms can be an effective alternative and thus suitable in civil engineering applications. In this chapter, metaheuristic algorithms in civil engineering problems are briefly presented and recent applications are discussed. Two case studies such as the optimization of tuned mass dampers and cost optimization of reinforced concrete beams are analyzed.


Metaheuristic algorithms Civil engineering Optimization 


  1. 1.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan, Ann Arbor (1975)Google Scholar
  2. 2.
    Goldberg, D.E., Samtani, M.P.: Engineering optimization via genetic algorithm. In: Proceedings of Ninth Conference on Electronic Computation. ASCE, New York, NY, pp. 471–482 (1986)Google Scholar
  3. 3.
    Sahab, M.G., Toropov, V.V., Gandomi, A.H.: A review on traditional and modern structural optimization: problems and techniques. In: Metaheuristic Applications in Structures and Infrastructures, pp. 25–47. Elsevier, Oxford (2013)Google Scholar
  4. 4.
    Marano, G.C., Quaranta, G., Monti, G.: Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements. Comput. Aided Civil Infrastruct. Eng. 26(2), 92–110 (2011)CrossRefGoogle Scholar
  5. 5.
    Sgambi, L., Gkoumas, K., Bontempi, F.: Genetic algorithms for the dependability assurance in the design of a long-span suspension bridge. Comput. Aided Civil Infrastruct. Eng. 27(9), 655–675 (2012)CrossRefGoogle Scholar
  6. 6.
    Kociecki, M., Adeli, H.: Two-phase genetic algorithm for topology optimization of free-form steel space-frame roof structures with complex curvatures. Eng. Appl. Artif. Intell. 32, 218–227 (2014)CrossRefGoogle Scholar
  7. 7.
    Li, J.P.: Truss topology optimization using an improved species-conserving genetic algorithm. Eng. Optim. 47(1), 107–128 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dezani, H., Bassi, R.D., Marranghello, N., Gomes, L., Damiani, F., da Silva, I.N.: Optimizing urban traffic flow using Genetic Algorithm with Petri net analysis as fitness function. Neuro Comput. 124, 162–167 (2014)Google Scholar
  9. 9.
    Putha, R., Quadrifoglio, L., Zechman, E.: Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions. Comput. Aided Civil Infrastruct. Eng. 27(1), 14–28 (2012)CrossRefGoogle Scholar
  10. 10.
    Chang, F.S., Wu, J.S., Lee, C.N., Shen, H.C.: Greedy-search-based multi-objective genetic algorithm for emergency logistics scheduling. Expert Syst. Appl. 41(6), 2947–2956 (2014)CrossRefGoogle Scholar
  11. 11.
    Zhu, W., Hu, H., Huang, Z.: Calibrating rail transit assignment models with Genetic Algorithm and automated fare collection data. Comput. Aided Civil Infrastruct. Eng. 29(7), 518–530 (2014)CrossRefGoogle Scholar
  12. 12.
    Kirkpatrick, S., GelattJr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)Google Scholar
  13. 13.
    Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Costa, A.L., Cunha, M.D.C., Coelho, P.A., Einstein, H.H.: Solving high-speed rail planning with the simulated annealing algorithm. J. Transp. Eng. 139(6), 635–642 (2013)CrossRefGoogle Scholar
  15. 15.
    Tong, K.H., Bakhary, N., Kueh, A.B.H., Yassin, A.Y.: Optimal sensor placement for mode shapes using improved simulated annealing. Smart Struct. Syst. 13(3), 389–406 (2014)Google Scholar
  16. 16.
    Liu, W., Ye, J.: Collapse optimization for domes under earthquake using a genetic simulated annealing algorithm. J. Constr. Steel Res. 97, 59–68 (2014)CrossRefGoogle Scholar
  17. 17.
    Karovic, O., Mays, L.W.: Sewer system design using simulated annealing in excel. Water Resour. Manage. 28(13), 4551–4565 (2014)CrossRefGoogle Scholar
  18. 18.
    Junghans, L., Darde, N.: Hybrid single objective genetic algorithm coupled with the simulated annealing optimization method for building optimization. Energy Build. 86, 651–662 (2015)CrossRefGoogle Scholar
  19. 19.
    Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26, 29–41 (1996)CrossRefGoogle Scholar
  20. 20.
    Reed, M., Yiannakou, A., Evering, R.: An ant colony algorithm for the multi-compartment vehicle routing problem. Appl. Soft Comput. 15, 169–176 (2014)CrossRefGoogle Scholar
  21. 21.
    Dias, J.C., Machado, P., Silva, D.C., Abreu, P.H.: An inverted ant colony optimization approach to traffic. Eng. Appl. Artif. Intell. 36, 122–133 (2014)CrossRefGoogle Scholar
  22. 22.
    Gao, W.: Determination of the noncircular critical slip surface in slope stability analysis by meeting ant colony optimization. J. Comput. Civil Eng. (2015)Google Scholar
  23. 23.
    Angelo, J.S., Bernardino, H.S., Barbosa, H.J.: Ant colony approaches for multiobjective structural optimization problems with a cardinality constraint. Adv. Eng. Softw. 80, 101–115 (2015)CrossRefGoogle Scholar
  24. 24.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks No. IV, 27 Nov–1 Dec, pp. 1942–1948, Perth Australia (1995)Google Scholar
  25. 25.
    Kaveh, A.: Advances in Metaheuristic Algorithms for Optimal Design of Structures. Springer, New York (2014)Google Scholar
  26. 26.
    Yang, X.S.: Recent Advances in Swarm Intelligence and Evolutionary Computation (2015)Google Scholar
  27. 27.
    Gholizadeh, S., Fattahi, F.: Design optimization of tall steel buildings by a modified particle swarm algorithm. Struct. Des. Tall Spec. Build. 23(4), 285–301 (2014)CrossRefGoogle Scholar
  28. 28.
    Kaveh, A., Sheikholeslami, R., Talatahari, S., Keshvari-Ilkhichi, M.: Chaotic swarming of particles: a new method for size optimization of truss structures. Adv. Eng. Softw. 67, 136–147 (2014)CrossRefGoogle Scholar
  29. 29.
    Gandomi, A.H., Kashani, A.R., Mousavi, M., Jalalvandi, M.: Slope stability analyzing using recent swarm intelligence techniques. Int. J. Numer. Anal. Methods Geomech. (2014)Google Scholar
  30. 30.
    Montalvo, I., Izquierdo, J., Pérez-García, R., Herrera, M.: Water distribution system computer-aided design by agent swarm optimization. Comput. Civil Infrastruct. Eng. 29(6), 433–448 (2014)CrossRefGoogle Scholar
  31. 31.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76, 60–68 (2001)CrossRefGoogle Scholar
  32. 32.
    Yoo, D.G., Kim, J.H., Geem, Z.W.: Overview of Harmony Search algorithm and its applications in civil engineering. Evol. Intel. 7(1), 3–16 (2014)CrossRefGoogle Scholar
  33. 33.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2008)Google Scholar
  34. 34.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations and Applications, pp. 169–178. Springer, Heidelberg (2009)Google Scholar
  36. 36.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Mixed variable structural optimization using firefly algorithm. Comput. Struct. 89(23), 2325–2336 (2011)CrossRefGoogle Scholar
  37. 37.
    Talatahari, S., Gandomi, A.H., Yun, G.J.: Optimum design of tower structures using firefly algorithm. Struct. Des. Tall Spec. Build. 23(5), 350–361 (2014)CrossRefGoogle Scholar
  38. 38.
    Mauder, T., Sandera, C., Stetina, J., Seda, M.: Optimization of the quality of continuously cast steel slabs using the firefly algorithm. Mater. Technol. 45(4), 347–350 (2011)Google Scholar
  39. 39.
    Miguel, L.F.F., Lopez, R.H., Miguel, L.F.F.: Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm. Adv. Eng. Softw. 56, 23–37 (2013)CrossRefGoogle Scholar
  40. 40.
    Liu, C., Gao, Z., Zhao, W.: A new path planning method based on firefly algorithm. In: 2012 Fifth International Joint Conference on Computational Sciences and Optimization (CSO), pp. 775–778 (2012)Google Scholar
  41. 41.
    Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: World Congress on Nature and Biologically Inspired Computing, 2009. NaBIC 2009, pp. 210–214 (2009)Google Scholar
  42. 42.
    Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)CrossRefGoogle Scholar
  43. 43.
    Kaveh, A., Bakhshpoori, T.: Optimum design of steel frames using cuckoo search algorithm with Lévy flights. Struct. Des. Tall Spec. Build. 22(13), 1023–1036 (2013)CrossRefGoogle Scholar
  44. 44.
    Gandomi, A.H., Talatahari, S., Yang, X.S., Deb, S.: Design optimization of truss structures using cuckoo search algorithm. Struct. Des. Tall Spec. Build. 22(17), 1330–1349 (2013)CrossRefGoogle Scholar
  45. 45.
    Ouaarab, A., Ahiod, B., Yang, X.S.: Discrete cuckoo search algorithm for the travelling salesman problem. Neural Comput. Appl. 24(7–8), 1659–1669 (2014)CrossRefGoogle Scholar
  46. 46.
    Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Berlin, Heidelberg (2010)Google Scholar
  47. 47.
    Yang, X.S., Hossein Gandomi, A.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012)CrossRefGoogle Scholar
  48. 48.
    Gandomi, A.H., Yang, X.S., Alavi, A.H., Talatahari, S.: Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 22(6), 1239–1255 (2013)CrossRefGoogle Scholar
  49. 49.
    Gholizadeh, S., Shahrezaei, A.M.: Optimal placement of steel plate shear walls for steel frames by bat algorithm. Struct. Des. Tall Spec. Build. 24(1), 1–18 (2015)CrossRefGoogle Scholar
  50. 50.
    Kaveh, A., Zakian, P.: Enhanced bat algorithm for optimal design of skeletal structures. Asian J. Civil Eng. 15(2), 179–212 (2014)Google Scholar
  51. 51.
    Talatahari, S., Kaveh, A.: Improved bat algorithm for optimum design of large-scale truss structures. Int. J. Optim. Civil Eng. 5(2), 241–254 (2015)Google Scholar
  52. 52.
    Bekdas, G., Nigdeli, S. M., Yang, X.S.: Metaheuristic optimization for the design of reinforced concrete beams under flexure moments. In: Proceedings of the 5th European Conference of Civil Engineering (ECCIE’14), pp. 184–188 (2014)Google Scholar
  53. 53.
    Zhou, Y., Xie, J., Zheng, H.: A hybrid bat algorithm with path relinking for capacitated vehicle routing problem. Math. Probl. Eng. (2013)Google Scholar
  54. 54.
    Bozorg-Haddad, O., Karimirad, I., Seifollahi-Aghmiuni, S., Loáiciga, H.A.: Development and application of the bat algorithm for optimizing the operation of reservoir systems. J. Water Resour. Plann. Manag. (2014). doi: 10.1061/(ASCE)WR.1943-5452.0000498 Google Scholar
  55. 55.
    Erol, O.K., Eksin, I.: A new optimization method: Big Bang Big Crunch. Adv. Eng. Softw. 37, 106–111 (2006)CrossRefGoogle Scholar
  56. 56.
    Camp, C.V.: Design of space trusses using Big Bang-Big Crunch optimization. J. Struct. Eng. 133(7), 999–1008 (2007)CrossRefGoogle Scholar
  57. 57.
    Kaveh, A., Talatahari, S.: Size optimization of space trusses using Big Bang-Big Crunch algorithm. Comput. Struct. 87(17), 1129–1140 (2009)CrossRefGoogle Scholar
  58. 58.
    Kaveh, A., Talatahari, S.: A discrete Big Bang-Big Crunch algorithm for optimal design of skeletal structures. Asian J. Civil Eng. 11(1), 103–122 (2010)Google Scholar
  59. 59.
    Hasançebi, O., Kazemzadeh Azad, S.: Discrete size optimization of steel trusses using a refined Big Bang–Big Crunch algorithm. Eng. Optim. 46(1), 61–83 (2014)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Hasançebi, O., Azad, S.K.: An exponential Big Bang-Big Crunch algorithm for discrete design optimization of steel frames. Comput. Struct. 110, 167–179 (2012)CrossRefGoogle Scholar
  61. 61.
    Tang, H., Zhou, J., Xue, S., Xie, L.: Big Bang-Big Crunch optimization for parameter estimation in structural systems. Mech. Syst. Signal Process. 24(8), 2888–2897 (2010)CrossRefGoogle Scholar
  62. 62.
    Camp, C.V., Akin, A.: Design of retaining walls using Big Bang-Big Crunch optimization. J. Struct. Eng. 138(3), 438–448 (2011)CrossRefGoogle Scholar
  63. 63.
    Kaveh, A., Talatahari, A.: A novel heuristic optimization method: charged system search. Acta Mech. 213, 267–289 (2010)CrossRefzbMATHGoogle Scholar
  64. 64.
    Kaveh, A., Maniat, M.:. Damage detection in skeletal structures based on charged system search optimization using incomplete modal data. Int. J. Civil Eng. 12(2A), 292–299 (2014)Google Scholar
  65. 65.
    Kaveh, A., Shokohi, F.: Cost optimization of castellated beams using charged system search algorithm. Iran. J. Sci. Technol. Trans. Civil Eng. 38(C1), 235–249 (2014)Google Scholar
  66. 66.
    Kaveh, A., Nasrollahi, A.: Charged system search and particle swarm optimization hybridized for optimal design of engineering structures. Sci. Iran. Trans. A Civil Eng. 21(2), 295 (2014)Google Scholar
  67. 67.
    Kaveh, A., Massoudi, M.S.: Multi-objective optimization of structures using charged system search. Sci. Iran. Trans. A Civil Eng. 21(6), 1845 (2014)Google Scholar
  68. 68.
    Kaveh, A., Mohammadi, S., Hosseini, O.K., Keyhani, A., Kalatjari, V.R.: Optimum parameters of tuned mass dampers for seismic applications using charged system search. Iran. J. Sci. Technol. Trans. Civil Eng. 39(C1), 21 (2015)Google Scholar
  69. 69.
    Kaveh, A., Pirgholizadeh, S., Hosseini, O.K.: Semi-active tuned mass damper performance with optimized fuzzy controller using CSS algorithm. Asian J. Civil Eng. (BHRC) 16(5), 587–606 (2015)Google Scholar
  70. 70.
    Gandomi, A.H., Alavi, A.H.: Krill Herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4381–4845 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Kaveh, A., Khayatazad, M.: A novel meta-heuristic method: ray optimization. Comput. Struct. 112–113, 283–294 (2012)CrossRefGoogle Scholar
  72. 72.
    Kaveh, A., Khayatazad, M.: Ray optimization for size and shape optimization of truss structures. Comput. Struct. 117, 82–94 (2013)CrossRefGoogle Scholar
  73. 73.
    Esmaeili, M., Zakeri, J.A., Kaveh, A., Bakhtiary, A., Khayatazad, M.: Designing granular layers for railway tracks using ray optimization algorithm. Sci. Iran. Trans. A Civil Eng. 22(1), 47 (2015)Google Scholar
  74. 74.
    Yang, X. S. (2012), Flower pollination algorithm for global optimization. In: Unconventional Computation and Natural Computation 2012, Lecture Notes in Computer Science, vol. 7445, pp. 240–249Google Scholar
  75. 75.
    Den Hartog, J.P. (ed.): Mechanical Vibrations. Courier Corporation (1985)Google Scholar
  76. 76.
    Warburton, G.B., Ayorinde, E.O.: Optimum absorber parameters for simple systems. Earthq. Eng. Struct. Dyn. 8(3), 197–217 (1980)CrossRefGoogle Scholar
  77. 77.
    Warburton, G.B.: Optimum absorber parameters for various combinations of response and excitation parameters. Earthq. Eng. Struct. Dyn. 10(3), 381–401 (1982)CrossRefGoogle Scholar
  78. 78.
    Sadek, F., Mohraz, B., Taylor, A.W., Chung, R.M.: A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq. Eng. Struct. Dyn. 26(6), 617–636 (1997)CrossRefGoogle Scholar
  79. 79.
    Rana, R., Soong, T.T.: Parametric study and simplified design of tuned mass dampers. Eng. Struct. 20(3), 193–204 (1998)CrossRefGoogle Scholar
  80. 80.
    Chang, C.C.: Mass dampers and their optimal designs for building vibration control. Eng. Struct. 21(5), 454–463 (1999)CrossRefGoogle Scholar
  81. 81.
    Lin, C.C., Wang, J.F., Ueng, J.M.: Vibration control identification of seismically excited MDOF structure-PTMD systems. J. Sound Vib. 240(1), 87–115 (2001)CrossRefGoogle Scholar
  82. 82.
    Aldemir, U.: Optimal control of structures with semiactive-tuned mass dampers. J. Sound Vib. 266(4), 847–874 (2003)MathSciNetCrossRefGoogle Scholar
  83. 83.
    Lee, C.L., Chen, Y.T., Chung, L.L., Wang, Y.P.: Optimal design theories and applications of tuned mass dampers. Eng. Struct. 28(1), 43–53 (2006)CrossRefGoogle Scholar
  84. 84.
    Bakre, S.V., Jangid, R.S.: Optimum parameters of tuned mass damper for damped main system. Struct. Control Health Monit. 14(3), 448–470 (2007)CrossRefGoogle Scholar
  85. 85.
    Hadi, M.N., Arfiadi, Y.: Optimum design of absorber for MDOF structures. J. Struct. Eng. 124(11), 1272–1280 (1998)CrossRefGoogle Scholar
  86. 86.
    Marano, G.C., Greco, R., Chiaia, B.: A comparison between different optimization criteria for tuned mass dampers design. J. Sound Vib. 329(23), 4880–4890 (2010)CrossRefGoogle Scholar
  87. 87.
    Singh, M.P., Singh, S., Moreschi, L.M.: Tuned mass dampers for response control of torsional buildings. Earthq. Eng. Struct. Dyn. 31(4), 749–769 (2002)CrossRefGoogle Scholar
  88. 88.
    Desu, N.B., Deb, S.K., Dutta, A.: Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings. Struct. Control Health Monit. 13(5), 897–916 (2006)CrossRefGoogle Scholar
  89. 89.
    Pourzeynali, S., Lavasani, H.H., Modarayi, A.H.: Active control of high rise building structures using fuzzy logic and genetic algorithms. Eng. Struct. 29(3), 346–357 (2007)CrossRefGoogle Scholar
  90. 90.
    Leung, A.Y.T., Zhang, H.: Particle swarm optimization of tuned mass dampers. Eng. Struct. 31(3), 715–728 (2009)CrossRefGoogle Scholar
  91. 91.
    Leung, A.Y., Zhang, H., Cheng, C.C., Lee, Y.Y.: Particle swarm optimization of TMD by non-stationary base excitation during earthquake. Earthq. Eng. Struct. Dynam. 37(9), 1223–1246 (2008)CrossRefGoogle Scholar
  92. 92.
    Steinbuch, R.: Bionic optimisation of the earthquake resistance of high buildings by tuned mass dampers. J. Bionic Eng. 8(3), 335–344 (2011)CrossRefGoogle Scholar
  93. 93.
    Bekdaş, G., Nigdeli, S.M.: Estimating optimum parameters of tuned mass dampers using harmony search. Eng. Struct. 33(9), 2716–2723 (2011)CrossRefGoogle Scholar
  94. 94.
    Bekdaş, G., Nigdeli, S.M.: Optimization of tuned mass damper with harmony search. In: Gandomi, A.H., Yang, X.-S., Alavi, A.H., Talatahari, S. (eds.) Metaheuristic Applications in Structures and Infrastructures, Chapter 14. Elsevier, Waltham (2013)Google Scholar
  95. 95.
    Bekdaş, G., Nigdeli, S.M.: Mass ratio factor for optimum tuned mass damper strategies. Int. J. Mech. Sci. 71, 68–84 (2013)CrossRefGoogle Scholar
  96. 96.
    Nigdeli, S.M., Bekdas, G.: Optimum tuned mass damper design for preventing brittle fracture of RC buildings. Smart Struct. Syst. 12(2), 137–155 (2013)CrossRefGoogle Scholar
  97. 97.
    Farshidianfar, A., Soheili, S.: Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction. Soil Dyn. Earthq. Eng. 51, 14–22 (2013)CrossRefGoogle Scholar
  98. 98.
    Farshidianfar, A.: ABC optimization of TMD parameters for tall buildings with soil structure interaction. Interact. Multiscale Mech. 6, 339–356 (2013)CrossRefGoogle Scholar
  99. 99.
    Farshidianfar, A.: Optimization of TMD parameters for earthquake vibrations of tall buildings including soil structure interaction. Int. J. Optim. Civil Eng. 3, 409–429 (2013)Google Scholar
  100. 100.
    Federal Emergency Management Agency (FEMA): Quantification of Building Seismic Performance Factors (2009)Google Scholar
  101. 101.
    Pacific Earthquake Engineering Research Center (PEER NGA DATABASE).
  102. 102.
    Coello, C.C., Hernández, F.S., Farrera, F.A.: Optimal design of reinforced concrete beams using genetic algorithms. Expert Syst. Appl. 12(1), 101–108 (1997)CrossRefGoogle Scholar
  103. 103.
    Rafiq, M.Y., Southcombe, C.: Genetic algorithms in optimal design and detailing of reinforced concrete biaxial columns supported by a declarative approach for capacity checking. Comput. Struct. 69(4), 443–457 (1998)CrossRefzbMATHGoogle Scholar
  104. 104.
    Camp, C.V., Pezeshk, S., Hansson, H.: Flexural design of reinforced concrete frames using a genetic algorithm. J. Struct. Eng. 129(1), 105–115 (2003)CrossRefGoogle Scholar
  105. 105.
    Govindaraj, V., Ramasamy, J.V.: Optimum detailed design of reinforced concrete frames using genetic algorithms. Eng. Optim. 39(4), 471–494 (2007)CrossRefGoogle Scholar
  106. 106.
    Fedghouche, F., Tiliouine, B.: Minimum cost design of reinforced concrete T-beams at ultimate loads using Eurocode2. Eng. Struct. 42, 43–50 (2012)CrossRefGoogle Scholar
  107. 107.
    Talatahari, S., Sheikholeslami, R., Shadfaran, M., Pourbaba, M.: Optimum design of gravity retaining walls using charged system search algorithm. Math. Probl. Eng. (2012)Google Scholar
  108. 108.
    Poursha, M., Khoshnoudian, F., Moghadam, A.S.: Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls. Int. J. Civil Eng. 9(1), 1–8 (2011)Google Scholar
  109. 109.
    Bekdas, G., Nigdeli, S.M.: Optimization of T-shaped RC flexural members for different compressive strengths of concrete. Int. J. Mech. 7, 109–119 (2013)Google Scholar
  110. 110.
    Lepš, M., Šejnoha, M.: New approach to optimization of reinforced concrete beams. Comput. Struct. 81(18), 1957–1966 (2003)Google Scholar
  111. 111.
    Camp, C.V., Huq, F.: CO 2 and cost optimization of reinforced concrete frames using a Big Bang-Big Crunch algorithm. Eng. Struct. 48, 363–372 (2013)CrossRefGoogle Scholar
  112. 112.
    ACI 318 M-05: Building code requirements for structural concrete and commentary, American Concrete Institute, Farmington Hills, MI, USA (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Xin-She Yang
    • 2
    • 1
    Email author
  • Gebrail Bekdaş
    • 3
  • Sinan Melih Nigdeli
    • 3
  1. 1.Design Engineering and MathematicsMiddlesex UniversityThe Burroughs, LondonUK
  2. 2.School of Science and TechnologyMiddlesex UniversityThe Burroughs, LondonUK
  3. 3.Department of Civil EngineeringIstanbul UniversityAvcılar, IstanbulTurkey

Personalised recommendations