Advances in Neurotechnology, Electronics and Informatics pp 125-139

Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 12) | Cite as

Comparing Methods for Decoding Movement Trajectory from ECoG in Chronic Stroke Patients

  • Martin Spüler
  • Florian Grimm
  • Alireza Gharabaghi
  • Martin Bogdan
  • Wolfgang Rosenstiel
Chapter

Abstract

Decoding the neural activity based on ECoG signals is widely used in the field of Brain-Computer Interfaces (BCIs) to predict movement trajectories or control a prosthetic device. However, there are only few reports of using ECoG in stroke patients. In this paper, we compare different methods for predicting contralateral movement trajectories from epidural ECoG signals recorded over the lesioned hemisphere in three chronic stroke patients. The results show that movement trajectories can be predicted with correlation coefficients ranging from 0.24 to 0.64. Depending on the intended application, either the use of Support Vector Regression (SVR) or Canonical Correlation Analysis (CCA) obtained the best results. By investigating how ECoG based decoding performs in comparison with EMG based decoding it becomes visible that abnormal muscle activation patterns affect the prediction and that using activity of only the forearm muscles, there is no significant difference between ECoG and EMG for predicting wrist movement trajectory.

References

  1. 1.
    Cramer, S., Nelles, G., Benson, R., Kaplan, J., Parker, R., Kwong, K., Kennedy, D., Finklestein, S., Rosen, B.: A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 28, 2518–2527 (1997)CrossRefGoogle Scholar
  2. 2.
    Kwakkel, G., Kollen, B.J., van der Ground, J., Prevo, A.J.: Probability of regaining dexterity in the flaccid upper limb impact of severity of paresis and time since onset in acute stroke. Stroke 34, 2181–2186 (2003)CrossRefGoogle Scholar
  3. 3.
    Yanagisawa, T., Hirata, M., Saitoh, Y., Goto, T., Kishima, H., Fukuma, R., Yokoi, H., Kamitani, Y., Yoshimine, T.: Real-time control of a prosthetic hand using human electrocorticography signals: technical note. J. Neurosurg. 114, 1715–1722 (2011)CrossRefGoogle Scholar
  4. 4.
    Buch, E., Weber, C., Cohen, L., Braun, C., Dimyan, M., Ard, T., Mellinger, J., Caria, A., Soekadar, S., Fourkas, A., Birbaumer, N.: Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39, 910–917 (2008)CrossRefGoogle Scholar
  5. 5.
    Broetz, D., Braun, C., Weber, C., Soekadar, S., Caria, A., Birbaumer, N.: Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabil. Neural Repair 24, 674–679 (2010)CrossRefGoogle Scholar
  6. 6.
    Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, Ö., Brasil, F.L., Liberati, G., Curado, M.R., Garcia-Cossio, E., Vyziotis, A., et al.: Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108 (2013)CrossRefGoogle Scholar
  7. 7.
    Spüler, M., Walter, A., Ramos-Murguialday, A., Naros, G., Birbaumer, N., Gharabaghi, A., Rosenstiel, W., Bogdan, M.: Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients. J. Neural Eng. 11, 066008 (2014)CrossRefGoogle Scholar
  8. 8.
    Gharabaghi, A., Kraus, D., Leao, M.T., Spüler, M., Walter, A., Bogdan, M., Rosenstiel, W., Naros, G., Ziemann, U.: Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation. Front. Hum. Neurosci. 8 (2014)Google Scholar
  9. 9.
    Gharabaghi, A., Naros, G., Khademi, F., Jesser, J., Spüler, M., Walter, A., Bogdan, M., Rosenstiel, W., Birbaumer, N.: Learned self-regulation of the lesioned brain with epidural electrocorticography. Front. Behav. Neurosci. 8 (2014)Google Scholar
  10. 10.
    Silvoni, S., Ramos-Murguialday, A., Cavinato, M., Volpato, C., Cisotto, G., Turolla, A., Piccione, F., Birbaumer, N.: Brain-computer interface in stroke: a review of progress. Clin. EEG Neurosci. 42, 245–252 (2011)CrossRefGoogle Scholar
  11. 11.
    Cirstea, M., Levin, M.F.: Compensatory strategies for reaching in stroke. Brain 123, 940–953 (2000)CrossRefGoogle Scholar
  12. 12.
    Lee, M.Y., Park, J.W., Park, R.J., Hong, J.H., Son, S.M., Ahn, S.H., Cho, Y.W., Jang, S.H.: Cortical activation pattern of compensatory movement in stroke patients. NeuroRehabilitation 25, 255–260 (2009)Google Scholar
  13. 13.
    Bin, G., Gao, X., Yan, Z., Hong, B., Gao, S.: An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J. Neural Eng. 6, 046002 (2009)CrossRefGoogle Scholar
  14. 14.
    Spüler, M., Rosenstiel, W., Bogdan, M.: Online adaptation of a c-VEP Brain-Computer Interface (BCI) based on Error-related potentials and unsupervised learning. PLoS ONE 7, e51077 (2012)CrossRefGoogle Scholar
  15. 15.
    Spüler, M., Walter, A., Rosenstiel, W., Bogdan, M.: Spatial filtering based on canonical correlation analysis for classification of evoked or event-related potentials in EEG data. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 1097–1103 (2014)CrossRefGoogle Scholar
  16. 16.
    Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)CrossRefMATHGoogle Scholar
  17. 17.
    Hastie, T., Buja, A., Tibshirani, R.: Penalized discriminant analysis. Ann. Stat. 73–102 (1995)Google Scholar
  18. 18.
    Bishop, C.M., et al.: Pattern recognition and machine learning, vol. 1. Springer, New York (2006)Google Scholar
  19. 19.
    Sun, L., Ji, S., Ye, J.: A least squares formulation for canonical correlation analysis. In: Proceedings of the 25th International Conference on Machine Learning. ACM, pp. 1024–1031 (2008)Google Scholar
  20. 20.
    Walter, A., Murguialday, A.R., Spüler, M., Naros, G., Leão, M.T., Gharabaghi, A., Rosenstiel, W., Birbaumer, N., Bogdan, M.: Coupling BCI and cortical stimulation for brain-state-dependent stimulation: methods for spectral estimation in the presence of stimulation after-effects. Front. Neural Circuits 6 (2012)Google Scholar
  21. 21.
    Fugl-Meyer, A., Jääskö, L., Leyman, I., Olsson, S., Steglind, S.: The post-stroke hemiplegic patient. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31 (1975)Google Scholar
  22. 22.
    Burg, J.P.: Maximum entropy spectral analysis. In: 37th Annual International Meeting., Society of Exploration Geophysics (1967)Google Scholar
  23. 23.
    Spüler, M., Rosenstiel, W., Bogdan, M.: A fast feature selection method for high-dimensional MEG BCI data. In: Proceedings of the 5th International Brain-Computer Interface Conference, pp. 24–27. Graz (2011)Google Scholar
  24. 24.
    Phinyomark, A., Chujit, G., Phukpattaranont, P., Limsakul, C., Hu, H.: A preliminary study assessing time-domain EMG features of classifying exercises in preventing falls in the elderly. In: 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 1–4 (2012)Google Scholar
  25. 25.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2, 27 (2011)Google Scholar
  26. 26.
    Dunteman, G.H.: Principal components analysis. No. 69. Sage, Newbury Park (1989)Google Scholar
  27. 27.
    Sheikh, H., McFarland, D.J., Sarnacki, W.A., Wolpaw, J.R.: Electroencephalographic (EEG)-based communication: EEG control versus system performance in humans. Neurosci. Lett. 345, 89–92 (2003)CrossRefGoogle Scholar
  28. 28.
    Schalk, G., Kubanek, J., Miller, K., Anderson, N., Leuthardt, E., Ojemann, J., Limbrick, D., Moran, D., Gerhardt, L., Wolpaw, J.: Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J. Neural Eng. 4, 264 (2007)CrossRefGoogle Scholar
  29. 29.
    Waldert, S., Pistohl, T., Braun, C., Ball, T., Aertsen, A., Mehring, C.: A review on directional information in neural signals for brain-ymachine interfaces. J. Physiol. Paris 103, 244–254 (2009)CrossRefGoogle Scholar
  30. 30.
    Schalk, G., Miller, K., Anderson, N., Wilson, J., Smyth, M., Ojemann, J., Moran, D., Wolpaw, J., Leuthardt, E.: Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5, 75–84 (2008)CrossRefGoogle Scholar
  31. 31.
    Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C.: Prediction of arm movement trajectories from ECoG-recordings in humans. J. Neurosci. Methods 167, 105–114 (2008)CrossRefGoogle Scholar
  32. 32.
    Nakanishi, Y., Yanagisawa, T., Shin, D., Fukuma, R., Chen, C., Kambara, H., Yoshimura, N., Hirata, M., Yoshimine, T., Koike, Y.: Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex. PLoS ONE 8, e72085 (2013)CrossRefGoogle Scholar
  33. 33.
    Wright, Z.A., Rymer, W.Z., Slutzky, M.W.: Reducing abnormal muscle coactivation after stroke using a myoelectric-computer interface a pilot study. Neurorehabil. Neural Repair 28, 443–451 (2014)CrossRefGoogle Scholar
  34. 34.
    Spüler, M., Rosenstiel, W., Bogdan, M.: Predicting wrist movement trajectory from ipsilesional ECoG in chronic stroke patients. In: Proceedings of 2nd International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX), pp. 38–45 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Martin Spüler
    • 1
  • Florian Grimm
    • 2
  • Alireza Gharabaghi
    • 2
  • Martin Bogdan
    • 3
  • Wolfgang Rosenstiel
    • 1
  1. 1.Department of Computer Engineering, Wilhelm Schickard Institute for Computer ScienceUniversity of TübingenTübingenGermany
  2. 2.Functional and Restorative Neurosurgery Unit, Department of NeurosurgeryUniversity Clinic TübingenTübingenGermany
  3. 3.Department of Computer EngineeringUniversity of LeipzigLeipzigGermany

Personalised recommendations