Skip to main content

Designing Fuzzy Controller for a Class of MIMO Nonlinear Systems Using Hybrid Elite Genetic Algorithm and Tabu Search

  • Chapter
  • First Online:
Nature-Inspired Computing for Control Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 40))

  • 788 Accesses

Abstract

This chapter presents a Hybrid Elite Genetic Algorithm and Tabu Search (HEGATS) to design optimal fuzzy controllers for multi input multi output (MIMO) nonlinear system. The principle of the proposed algorithm is to seek the elitism by GA and introduce it in the TS algorithm as initial solution in order to find the best fuzzy rule base of the fuzzy controller. The fuzzy rule base of the fuzzy controller is tuned for optimal control performance using HEGATS by minimizing the mean square error. The proposed algorithm is tested for control of a helicopter model simulator and a double inverted pendulum. Simulation results proved the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 33 (1965)

    Article  MATH  Google Scholar 

  2. Mamdani, E.: Application of fuzzy logic to approximate reasoning using linguistic systems. Fuzzy Sets Syst. 26, 1182–1191 (1977)

    MATH  Google Scholar 

  3. Procyk, T.J., Mamdani, E.H.: A linguistic self-organising process controller. Automatica 15, 15–30 (1979)

    Article  MATH  Google Scholar 

  4. Palm, R.: Sliding mode fuzzy control. In: Proceeding of the IEEE Presented at the Conference on Fuzzy Systems (Fuzz´IEEE 92), pp. 519–526. San Diego, USA (1992)

    Google Scholar 

  5. Foulloy, L.: Contrôle qualitative et contrôle flou: vers une méthode d’écriture des contrôleurs flous. Actes du 12ième journée internationale sur les systèmes experts et leurs applications, Avignon, France (1992)

    Google Scholar 

  6. Galichet, S., Dussud, M., Foulloy, L.: Contrôleurs flous: equivalences et études comparatives. Actes des rencontres francophones sur la logique floue et ses applications (LFA’92), pp. 229–236. Nîmes, France (1992)

    Google Scholar 

  7. Galichet, S., Foulloy, L.: Fuzzy controllers: synthesis and equivalences. IEEE Trans. Fuzzy Syst. 3(2), 140–148 (1995)

    Article  MATH  Google Scholar 

  8. Hayashi, I., Nomura, H., Wakami, N.: Acquisition of inference rules by neural network driven fuzzy reasoning. Jpn. J. Fuzzy Theory Syst. 2(4), 453–469 (1990)

    Google Scholar 

  9. Wang, L.X.: Fuzzy systems as nonlinear dynamic system identifiers part I: design. In: Proceedings of the 31st Conference on Decision and Control, pp. 897–902. Tucson, AZ (1992)

    Google Scholar 

  10. Wang, L.X., Mendel, J.M.: Back-propagation fuzzy system as nonlinear dynamic system identifiers. In: Proceedings of the First IEEE Conference on Fuzzy Systems, pp. 1409–1418 (1992)

    Google Scholar 

  11. Horikawa, S., Furuhashi, T., Uchikawa, Y.: Composition methods and learning algorithms of fuzzy neural networks. Jpn. J. Fuzzy Theory Syst. 4(5), 529–556 (1992)

    Google Scholar 

  12. Wang, L.X.: Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1(2), 146–155 (1993)

    Google Scholar 

  13. Wang, L.X.: Design and analysis of fuzzy identifiers of nonlinear dynamic systems. IEEE Trans. Autom. Control 40(1), 11–23 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nomura, H., Hayashi, I., Wakami, N.: A learning method of fuzzy inference rules by descent method. In: Proceedings of the First IEEE Conference on Fuzzy Systems, pp. 203–210 (1992)

    Google Scholar 

  15. Nomura, H., Hayashi, I., Wakami, N.: Self-Tuning fuzzy reasoning by delta rule and its application to obstacle avoidance. Jpn. J. Fuzzy Theory Syst. 4(2), 261–272 (1992)

    Google Scholar 

  16. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  17. Shi, Y., Mizumoto, M.: An improvement of neuro-fuzzy learning algorithm for tuning fuzzy rules. Fuzzy Sets Syst. 118, 339–350 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rojas, I., Piomares, H., Ortega, J., Prieto, A.: Self-organized fuzzy system generation from training examples. IEEE Trans. Fuzzy Syst. 1, 23–36 (2000)

    Article  Google Scholar 

  19. Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10(2), 144–154 (2002)

    Article  Google Scholar 

  20. Yao, X.: Evolutionary Computation─Theory and Applications. World Scientific, Singapore (1999)

    Book  Google Scholar 

  21. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3, 95–99 (1988)

    Article  Google Scholar 

  22. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press, Cambridge (1992)

    Google Scholar 

  23. Thrift, P.: Fuzzy logic synthesis with genetic algorithms. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 509–513 (1991)

    Google Scholar 

  24. Karr, C.L.: Applying genetics to fuzzy logic. AI Expert 6(3), 38–43 (1991)

    Google Scholar 

  25. Mohammadian, M., Stonier, R.: Generating fuzzy rules by genetic algorithms. In: Proceeding of 3rd IEEE International Workshop on Robot and Human Communication, pp. 362–367. Nagoya (1994)

    Google Scholar 

  26. Herrera, F., Lozano, M., Verdegay, J.L.: Tuning fuzzy logic controllers by genetic algorithms. Int. J. Approximate Reasoning 1, 299–315 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, C., Wong, C.: Self-generating rule-mapping fuzzy controller design using a genetic algorithm. IEE Proceedings Control Theory Appl. 49, 143–148 (2002)

    Article  Google Scholar 

  28. Belarbi, K., Titeli, F., Bourebia, W., Benmohammed, K.: Design of Mamdani fuzzy logic controllers with rule base minimisation using genetic algorithm. Eng. Appl. Artif. Intell. 18, 875–880 (2005)

    Article  Google Scholar 

  29. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Piscataway, pp. 1942–1948 (1995)

    Google Scholar 

  30. Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. 34(2), 997–1006 (2004)

    Google Scholar 

  31. Chatterjee, A., Pulasinghe, K., Watanabe, K., Izumi, K.: A particle swarm-optimized fuzzy-neural network for voice-controlled robot systems. IEEE Trans. Ind. Electron. 52(6), 1478–1489 (2005)

    Article  Google Scholar 

  32. Sharma, K.D., Chatterjee, A., Rakshit, A.: A hybrid approach for design of stable adaptive fuzzy controllers employing Lyapunov theory and particle swarm optimization. IEEE Trans. Fuzzy Syst. 17(2), 329–342 (2009)

    Article  Google Scholar 

  33. Herrera, F., Lozano, M., Verdegay, J.L.: A learning process for fuzzy control rules using genetic algorithms. Fuzzy Sets Syst. 100(1–3), 143–158 (1998)

    Article  Google Scholar 

  34. Chang, C.H., Wu, Y.C.: Genetic algorithm based tuning method for symmetric membership functions of fuzzy logic control system. In: Proceedings IEEE/IAS International Conference on Industrial Automation and Control Emerging Technologies, pp. 421–428 (1995)

    Google Scholar 

  35. Homaifar, A., McCormick, E.: Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Syst. 3(2), 129–139 (1995)

    Article  Google Scholar 

  36. Belarbi, K., Titel, F.: Genetic algorithm for the design of a class of fuzzy controllers: an alternative approach. IEEE Trans. Fuzzy Syst. 8(4), 398–405 (2000)

    Article  Google Scholar 

  37. Hoffmann, F.: Evolutionary algorithms for fuzzy control system design. Proc. IEEE 89(9), 1318–1333 (2001)

    Article  Google Scholar 

  38. Glover, F.: Tabu search—part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  39. Glover, F.: Tabu search—part II. ORSA J. Comput. 2(1), 4–32 (1990)

    Article  MATH  Google Scholar 

  40. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  41. Bersini, H., Gorrini, V.: Methods for adaptive process control. In: Proceedings of the 1st European Congress on Fuzzy Intelligent Technologies EUFIT’93, pp. 55–61. Aachen, Germany (1993)

    Google Scholar 

  42. Boers, E., Kuiper, H.: Biological metaphors and the design of modular artificial neural networks. Master thesis at Leiden University, The Netherlands (1992)

    Google Scholar 

  43. Koenn, P.: Combining genetic algorithms and neural networks: the encoding problem. A Thesis for the Master of Science Degree, The University of Tennessee, Knoxville (1994)

    Google Scholar 

  44. Holland, J.: Adaption in Natural and Artificial Systems. University of Michigan Press, Ann Harbor (1975)

    MATH  Google Scholar 

  45. Hertz, A., Taillard, E., Werra, D.: A tutorial on tabu search. In: Proceedings of Giornate di Lavoro AIRO, vol. 95, pp. 13–24 (1995)

    Google Scholar 

  46. Aarts, E., Lenstra, J.K.: Local Search in Combinatorial Optimization. Wiley, Old technical report ORWP9218, p. 121–136 (1997)

    Google Scholar 

  47. Bagis, A.: Fuzzy rule base design using tabu search algorithm for nonlinear system modeling. ISA Trans. 47, 32–44 (2008)

    Article  Google Scholar 

  48. Garcia-Martinez, C., Lozano, M., Herrera, F., Molina, D.: Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur. J. Oper. Res. 3(185), 1088–1113 (2008)

    Article  MATH  Google Scholar 

  49. Ding, J.L., Chen, Z.Q., Yuan, Z.Z.: On the combination of genetic algorithm and Ant algorithm. J. Comput. Res. Dev. 40(9), 1351–1356 (2003)

    Google Scholar 

  50. Boubertakh, H., Labiod, S., and Tadjine,M.: PSO to Design Decentralized Fuzzy PI Controllers: Application for a Helicopter. 20th Mediterranean Conference on Control & Automation (MED). Barcelona, Spain (2012)

    Google Scholar 

  51. Wan, E.A., Bogdanov, A.A.: Model predictive neural control with applications to a 6 DOF helicopter model. In: Proceedings 2001 American Control Conference, pp. 488–493. Arlington, Virginia (2001)

    Google Scholar 

  52. Boubertakh, H., Tadjine, M.: Tuning Fuzzy PD and PI controllers using reinforcement learning. ISA Trans. 49, 543–551 (2010)

    Article  Google Scholar 

  53. Talbi, N., Belarbi, K.: Designing fuzzy controllers for a class of MIMO systems using Hybrid Particle Swarm optimization and Tabu Search. Int. J. Hybrid Intell. Syst. 10(1), 1–9 (2013)

    Article  Google Scholar 

  54. Spooner, J.T., Passino, K.M.: Adaptive control of a class of decentralized nonlinear systems. IEEE Trans. Autom. Control 41, 280–284 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesrine Talbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Talbi, N., Belarbi, K. (2016). Designing Fuzzy Controller for a Class of MIMO Nonlinear Systems Using Hybrid Elite Genetic Algorithm and Tabu Search. In: Espinosa, H. (eds) Nature-Inspired Computing for Control Systems. Studies in Systems, Decision and Control, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-26230-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26230-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26228-4

  • Online ISBN: 978-3-319-26230-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics