Skip to main content

Evolutionary Function Approximation for Gait Generation on Legged Robots

  • Chapter
  • First Online:
Nature-Inspired Computing for Control Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 40))

  • 833 Accesses

Abstract

Reinforcement learning methods can be computationally expensive. Their cost is prone to be higher when the cardinality of the state space representation becomes larger. This curse of dimensionality plays an important role on our work, since gait generation by using more degrees of freedom at each leg, implies a bigger state space after discretization, and look-up tables become impractical. Thus, appropriate function approximators are needed for such kind of tasks on robotics. This chapter shows the advantage of using reinforcement learning, specifically within the batch framework. A neuroevolution of augmenting topologies scheme is used as function approximator, a particular case of a topology and weight evolving artificial neural network which has proved to outperform a fixed-topology network for certain tasks. A comparison between function approximators within the batch reinforcement learning approach is tested on a simulated version of an hexapod robot designed and already built at our undergraduate and graduate students group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown Jr, H., McMordie, D., Saranli, U., Full, R., Koditschek, D.E.: Rhex: a biologically inspired hexapod runner. Auton. Robots 11(3), 207–213 (2001)

    Article  MATH  Google Scholar 

  2. Beer, R.D., Quinn, R.D., Chiel, H.J., Ritzmann, R.E.: Biologically inspired approaches to robotics: what can we learn from insects? Commun. ACM 40(3), 30–38 (1997)

    Article  Google Scholar 

  3. Bertsekas, D.P., Bertsekas, D.P.: Dynamic programming and optimal control, vol. 1. Athena Scientific, Belmont (1995)

    Google Scholar 

  4. Cunha, J., Lau, N., Neves, A.J.R.: Q-batch: initial results with a novel update rule for batch reinforcement learning. In: Advances in Artificial Intelligence-Local Proceedings, XVI Portuguese Conference on Artificial Intelligence. Azores pp. 240–251 (2013)

    Google Scholar 

  5. Devjanin, E.A., Gurfinkel, V.S., Gurfinkel, E.V., Kartashev, V.A., Lensky, A.V., Yu Shneider, A., Shtilman, L.G.: The six-legged walking robot capable of terrain adaptation. Mech. Mach. Theor. 18(4), 257–260 (1983)

    Article  Google Scholar 

  6. Duan, X., Chen, W., Yu, S., Liu, J.: Tripod gaits planning and kinematics analysis of a hexapod robot. In: Control and Automation, 2009. ICCA 2009. IEEE International Conference on, pp. 1850–1855, IEEE (2009)

    Google Scholar 

  7. Erden, M.S., Leblebicioğlu, K.: Free gait generation with reinforcement learning for a six-legged robot. Robot. Auton. Syst. 56(3), 199–212 (2008)

    Article  Google Scholar 

  8. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. J.Mach. Learn. Res., 503–556 (2005)

    Google Scholar 

  9. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual robot experimentation platform v-rep: a versatile 3d robot simulator. Simulation, modeling, and programming for autonomous robots, pp. 51–62. Springer, Berlin (2010)

    Chapter  Google Scholar 

  10. Ghanbari, A., Vaghei, Y., Noorani, S., Reza, S.M.: Reinforcement learning in neural networks: a survey. Int. J. Adv. Biol. Biomed. Res. 2(5), 1398–1416 (2014)

    Google Scholar 

  11. Glette, K., Klaus, G., Zagal, J.C., Torresen, J.: Evolution of locomotion in a simulated quadruped robot and transferral to reality. In: Proceedings of the Seventeenth International Symposium on Artificial Life and Robotics (2012)

    Google Scholar 

  12. Glorennec, P.Y., Jouffe, L.: Fuzzy Q-learning. In: Fuzzy Systems, 1997., Proceedings of the Sixth IEEE International Conference on, vol. 2. pp. 659–662, IEEE (1997)

    Google Scholar 

  13. Gruau, F.: Genetic synthesis of modular neural networks. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 318–325. Morgan Kaufmann Publishers Inc. (1993)

    Google Scholar 

  14. He, P., Jagannathan, S.: Reinforcement learning-based output feedback control of nonlinear systems with input constraints. IEEE Trans. Syst. Man Cybern. B Cybern. 35(1), 150–154 (2005)

    Article  Google Scholar 

  15. Hirose, S., Fukuda, Y., Yoneda, K., Nagakubo, A., Tsukagoshi, H., Arikawa, K., Endo, G., Doi, T., Hodoshima, R.: Quadruped walking robots at tokyo institute of technology: design, analysis, and gait control methods. IEEE Robot. Autom. Mag. 16(2), 104–114 (2009)

    Article  Google Scholar 

  16. Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., Tanie, K.: Planning walking patterns for a biped robot. IEEE Trans. Robot. Autom. 17(3), 280–289 (2001)

    Article  Google Scholar 

  17. Kajita, S., Morisawa, M., Miura, K., Nakaoka, S., Harada, K., Kaneko, K., Kanehiro, F., Yokoi, K.: Biped walking stabilization based on linear inverted pendulum tracking. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 4489–4496. IEEE (2010)

    Google Scholar 

  18. Kalyanakrishnan, S., Stone, P.: Batch reinforcement learning in a complex domain. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, p.94. ACM (2007)

    Google Scholar 

  19. Kamikawa, K., Arai, T., Inoue, K., Mae, Y.: Omni-directional gait of multi-legged rescue robot. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, vol. 3, pp. 2171–2176. IEEE (2004)

    Google Scholar 

  20. Kiumarsi, B., Lewis, F.L., Modares, H., Karimpour, A., Naghibi-Sistani, M.B.: Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics. Automatica 50(4), 1167–1175 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kiumarsi-Khomartash, B., Lewis, F.L., Naghibi-Sistani, M.B., Karimpour, A.: Optimal tracking control for linear discrete-time systems using reinforcement learning. In: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, pp. 3845–3850. IEEE (2013)

    Google Scholar 

  22. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Robot. Res. 32(11), 1238–1274 (2013)

    Article  Google Scholar 

  23. Konidaris, G., Osentoski, S., Thomas, P.S.: Value function approximation in reinforcement learning using the fourier basis. In: AAAI (2011)

    Google Scholar 

  24. Kosslyn, S.M., Kosslyn, S.: Top brain, bottom brain: surprising insights into how you think. Simon and Schuster, New York (2013)

    Google Scholar 

  25. Lange, S., Gabel, T., Riedmiller, M.: Batch reinforcement learning. In: Reinforcement Learning, pp. 45–73. Springer, Berlin (2012)

    Google Scholar 

  26. Lewis, F.L., Liu, D.: Reinforcement learning and approximate dynamic programming for feedback control, vol. 17. Wiley, New York (2013)

    Google Scholar 

  27. Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. Learn. 8(3–4), 293–321 (1992)

    Google Scholar 

  28. Lin, L.J.: Reinforcement learning for robots using neural networks. Technical report, DTIC Document (1993)

    Google Scholar 

  29. Lohmann, S., Yosinski, J., Gold, E., Clune, J., Blum, J., Lipson, H.: Aracna: an open-source quadruped platform for evolutionary robotics. Artif. Life 13, 387–392 (2012)

    Google Scholar 

  30. Ma, S., Tomiyama, T., Wada, H.: Omnidirectional static walking of a quadruped robot. IEEE Trans. Robot. 21(2), 152–161 (2005)

    Article  Google Scholar 

  31. Modares, H., Lewis, F.L.: Online solution to the linear quadratic tracking problem of continuous-time systems using reinforcement learning. In: Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, pp. 3851–3856. IEEE (2013)

    Google Scholar 

  32. Munos, R.: Error bounds for approximate policy iteration. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 560–567 (2003)

    Google Scholar 

  33. Nakamura, Y., Mori, T., Sato, M., Ishii, S.: Reinforcement learning for a biped robot based on a cpg-actor-critic method. Neural Netw. 20(6), 723–735 (2007)

    Article  MATH  Google Scholar 

  34. Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., Littman, M.L.: An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 752–759. ACM (2008)

    Google Scholar 

  35. Pyeatt, L.D., Howe, A.E., et al.: Decision tree function approximation in reinforcement learning. In: Proceedings of the Third International Symposium on Adaptive Systems: Evolutionary Computation and Probabilistic Graphical Models, vol. 2. pp. 70–77 (2001)

    Google Scholar 

  36. Riedmiller, M.: Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learning method. In: Machine Learning: ECML 2005, pp. 317–328. Springer, Berlin (2005)

    Google Scholar 

  37. Schmucker,U., Schneider, A., Ihme, T.: Hexagonal walking vehicle with force sensing capability. In: Proceedings of 6th International Symposium on Measurement and Control in Robotics. Brussel, pp. 354–359 (1996)

    Google Scholar 

  38. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  39. Sutton, R.S., Barto, A.G.: Introduction to reinforcement learning. MIT Press, Cambridge (1998)

    Google Scholar 

  40. Sutton, R.S., Barto, A.G., Williams, R.J.: Reinforcement learning is direct adaptive optimal control. IEEE Control Syst. 12(2), 19–22 (1992)

    Article  Google Scholar 

  41. Vamvoudakis, K.G., Lewis, F.L.: Online actor–critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica 46(5), 878–888 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Watkins, C.J.C.H.: Learning from delayed rewards. PhD thesis, University of Cambridge, England (1989)

    Google Scholar 

  43. Whiteson, S., Stone, P.: Evolutionary function approximation for reinforcement learning. J. Mach. Learn. Res. 7, 877–917 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Wiering, M., Van Otterlo, M.: Reinforcement learning. In: Adaptation, Learning, and Optimization, vol. 12. Springer, Berlin (2012)

    Google Scholar 

  45. Williams, R.J., Baird, L.C.: Tight performance bounds on greedy policies based on imperfect value functions. Technical report, Citeseer (1993)

    Google Scholar 

  46. Yamaguchi, A., Hyon, S., Ogasawara, T.: Reinforcement learning for balancer embedded humanoid locomotion. In: Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pp. 308–313. IEEE (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Solis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silva, O.A., Solis, M.A. (2016). Evolutionary Function Approximation for Gait Generation on Legged Robots. In: Espinosa, H. (eds) Nature-Inspired Computing for Control Systems. Studies in Systems, Decision and Control, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-26230-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26230-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26228-4

  • Online ISBN: 978-3-319-26230-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics