Skip to main content

Modelling Dental Milling Process with Machine Learning-Based Regression Algorithms

  • Conference paper
  • First Online:
  • 991 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 403))

Abstract

Control of dental milling processes is a task which can significantly reduce production costs due to possible savings in time. Appropriate setup of production parameters can be done in a course of optimisation aiming at minimising selected objective function, e.g. time. Nonetheless, the main obstacle here is lack of explicitly defined objective functions, while model of relationship between the parameters and outputs (such as costs or time) is not known. Therefore, the model must be discovered in advance to use it for optimisation. Machine learning algorithms serve this purpose perfectly. There are plethoras of competing methods and the question is which shall be selected. In this paper, we present results of extensive investigation on this question. We evaluated several well-known classical regression algorithms, ensemble approaches and feature selection techniques in order to find the best model for dental milling model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.knime.org/.

  2. 2.

    http://www.cs.waikato.ac.nz/ml/weka/.

References

  1. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. The MIT Press, Boston (2010)

    MATH  Google Scholar 

  2. Bosch, J., López, G., Batlles, F.: Daily solar irradiation estimation over a mountainous area using artificial neural networks. Renew. Energy 33(7), 1622–1628 (2008). http://www.sciencedirect.com/science/article/pii/S0960148107002881

    Google Scholar 

  3. Breiman, L.: Bagging predictors. Mach. Learn. Boston 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. J. Inf. Fusion 6, 5–20 (2005)

    Article  Google Scholar 

  5. Calvo-Rolle, J.L., Casteleiro-Roca, J.L., Quintián-Pardo, H., del Carmen Meizoso-Lopez, M.: A hybrid intelligent system for PID controller using in a steel rolling process. Expert Syst. Appl. 40(13), 5188–5196 (2013). http://dx.doi.org/10.1016/j.eswa.2013.03.013

    Google Scholar 

  6. Chang, H.H., Chen, Y.K.: Neuro-genetic approach to optimize parameter design of dynamic multiresponse experiments. Appl. Soft Comput. 11(1), 436–442 (2011). http://www.sciencedirect.com/science/article/pii/S1568494609002567

    Google Scholar 

  7. Diz, M.L.B., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. Int. J. Neural Syst. 21(4), 277–296 (2011). http://dx.doi.org/10.1142/S0129065711002833

  8. Kumar, V., Khamba, J.S.: Statistical analysis of experimental parameters in ultrasonic machining of tungsten carbide using the taguchi approach. J. Am. Ceram. Soc. 91(1), 92–96 (2008). http://dx.doi.org/10.1111/j.1551-2916.2007.02107.x

    Google Scholar 

  9. Liero, H., Härdle, W.: Applied nonparametric regression (Biometric society monographs no. 19) Cambridge University Press 1990, p. 333. Biom. J. 33(6), 704–704 (1991). http://dx.doi.org/10.1002/bimj.4710330610

  10. Liu, Y.H., Liu, C.L., Huang, J.W., Chen, J.H.: Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments. Sol. Energy 89(0), 42–53 (2013). http://www.sciencedirect.com/science/article/pii/S0038092X12004082

    Google Scholar 

  11. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc, New York (1997)

    MATH  Google Scholar 

  12. Platt, J.: Probabilistic outputs for support vector machines and comparison to regularize likelihood methods. In: Smola, A., Bartlett, P., Schoelkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 61–74. MIT Press, Cambridge (2000). http://citeseer.ist.psu.edu/platt99probabilistic.html

  13. Schapire, R.E.: The boosting approach to machine learning: an overview. In: Proceedings of the MSRI Workshop on Nonlinear Estimation and Classification (2001)

    Google Scholar 

  14. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  15. Silipo, R., Mazanetz, M.P.: The KNIME Cookbook: Recipes for the Advanced User. KNIME Press, Switzerland (2012)

    Google Scholar 

  16. Torreglosa, J., Jurado, F., García, P., Fernández, L.: PEM fuel cell modeling using system identification methods for urban transportation applications. Int. J. Hydrog. Energy 36(13), 7628–7640 (2011). http://www.sciencedirect.com/science/article/pii/S0360319911007233 hysydays

    Google Scholar 

  17. Vera, V., Corchado, E., Redondo, R., Sedano, J., Garcia, A.E.: Applying soft computing techniques to optimise a dental milling process. Neurocomputing 109, 94–104 (2013). http://dx.doi.org/10.1016/j.neucom.2012.04.033

    Google Scholar 

  18. Villar, J.R., González, S., Sedano, J., Corchado, E., Puigpinós, L., Ciurana, J.: Meta-heuristic improvements applied for steel sheet incremental cold shaping. Memetic Computing 4(4), 249–261 (2012). http://dx.doi.org/10.1007/s12293-012-0100-4

    Google Scholar 

  19. Wang, Y., Witten, I.H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning. pp. 650–657. Sydney, Australia (2002)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Polish National Science Centre under the grant no. DEC-2013/09/B/ST6/02264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Jackowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jackowski, K., Jankowski, D., Quintián, H., Corchado, E., Woźniak, M. (2016). Modelling Dental Milling Process with Machine Learning-Based Regression Algorithms. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. Advances in Intelligent Systems and Computing, vol 403. Springer, Cham. https://doi.org/10.1007/978-3-319-26227-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26227-7_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26225-3

  • Online ISBN: 978-3-319-26227-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics