Modelling Dental Milling Process with Machine Learning-Based Regression Algorithms

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 403)


Control of dental milling processes is a task which can significantly reduce production costs due to possible savings in time. Appropriate setup of production parameters can be done in a course of optimisation aiming at minimising selected objective function, e.g. time. Nonetheless, the main obstacle here is lack of explicitly defined objective functions, while model of relationship between the parameters and outputs (such as costs or time) is not known. Therefore, the model must be discovered in advance to use it for optimisation. Machine learning algorithms serve this purpose perfectly. There are plethoras of competing methods and the question is which shall be selected. In this paper, we present results of extensive investigation on this question. We evaluated several well-known classical regression algorithms, ensemble approaches and feature selection techniques in order to find the best model for dental milling model.


Dental milling process Machine learning Regression  Ensemble of predictors Feature selection 



This work was supported by the Polish National Science Centre under the grant no. DEC-2013/09/B/ST6/02264.


  1. 1.
    Alpaydin, E.: Introduction to Machine Learning, 2nd edn. The MIT Press, Boston (2010)zbMATHGoogle Scholar
  2. 2.
    Bosch, J., López, G., Batlles, F.: Daily solar irradiation estimation over a mountainous area using artificial neural networks. Renew. Energy 33(7), 1622–1628 (2008). Google Scholar
  3. 3.
    Breiman, L.: Bagging predictors. Mach. Learn. Boston 24, 123–140 (1996)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. J. Inf. Fusion 6, 5–20 (2005)CrossRefGoogle Scholar
  5. 5.
    Calvo-Rolle, J.L., Casteleiro-Roca, J.L., Quintián-Pardo, H., del Carmen Meizoso-Lopez, M.: A hybrid intelligent system for PID controller using in a steel rolling process. Expert Syst. Appl. 40(13), 5188–5196 (2013). Google Scholar
  6. 6.
    Chang, H.H., Chen, Y.K.: Neuro-genetic approach to optimize parameter design of dynamic multiresponse experiments. Appl. Soft Comput. 11(1), 436–442 (2011). Google Scholar
  7. 7.
    Diz, M.L.B., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. Int. J. Neural Syst. 21(4), 277–296 (2011).
  8. 8.
    Kumar, V., Khamba, J.S.: Statistical analysis of experimental parameters in ultrasonic machining of tungsten carbide using the taguchi approach. J. Am. Ceram. Soc. 91(1), 92–96 (2008). Google Scholar
  9. 9.
    Liero, H., Härdle, W.: Applied nonparametric regression (Biometric society monographs no. 19) Cambridge University Press 1990, p. 333. Biom. J. 33(6), 704–704 (1991).
  10. 10.
    Liu, Y.H., Liu, C.L., Huang, J.W., Chen, J.H.: Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments. Sol. Energy 89(0), 42–53 (2013). Google Scholar
  11. 11.
    Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc, New York (1997)zbMATHGoogle Scholar
  12. 12.
    Platt, J.: Probabilistic outputs for support vector machines and comparison to regularize likelihood methods. In: Smola, A., Bartlett, P., Schoelkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 61–74. MIT Press, Cambridge (2000).
  13. 13.
    Schapire, R.E.: The boosting approach to machine learning: an overview. In: Proceedings of the MSRI Workshop on Nonlinear Estimation and Classification (2001)Google Scholar
  14. 14.
    Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  15. 15.
    Silipo, R., Mazanetz, M.P.: The KNIME Cookbook: Recipes for the Advanced User. KNIME Press, Switzerland (2012)Google Scholar
  16. 16.
    Torreglosa, J., Jurado, F., García, P., Fernández, L.: PEM fuel cell modeling using system identification methods for urban transportation applications. Int. J. Hydrog. Energy 36(13), 7628–7640 (2011). hysydaysGoogle Scholar
  17. 17.
    Vera, V., Corchado, E., Redondo, R., Sedano, J., Garcia, A.E.: Applying soft computing techniques to optimise a dental milling process. Neurocomputing 109, 94–104 (2013). Google Scholar
  18. 18.
    Villar, J.R., González, S., Sedano, J., Corchado, E., Puigpinós, L., Ciurana, J.: Meta-heuristic improvements applied for steel sheet incremental cold shaping. Memetic Computing 4(4), 249–261 (2012). Google Scholar
  19. 19.
    Wang, Y., Witten, I.H.: Modeling for optimal probability prediction. In: Proceedings of the Nineteenth International Conference in Machine Learning. pp. 650–657. Sydney, Australia (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland
  2. 2.Department. de Informática y AutomáticaUniversidad de SalamancaSalamancaSpain

Personalised recommendations