Advertisement

InterCriteria Analysis of Generation Gap Influence on Genetic Algorithms Performance

  • Olympia Roeva
  • Peter Vassilev
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 401)

Abstract

In this investigation InterCriteria Analysis (ICA) is applied to examine the influences of one of the genetic algorithms parameters—the generation gap (ggap). The investigation is carried out during the model parameter identification of E. coli MC4110 cultivation process. The apparatuses of index matrices and intuitionistic fuzzy sets, which are the core of ICA, are used to establish the relations between ggap and GAs outcomes (computational time and decision accuracy), on one hand, and cultivation process model parameters on the other hand. The obtained results after ICA application are analyzed in terms of convergence time and model accuracy and some conclusions about derived interactions are reported.

Keywords

Intercriteria analysis Genetic algorithms Generation gap Parameter identification E. coli 

Notes

Acknowledgments

The work is supported by the Bulgarian National Scientific Fund under the grant DFNI-I-02-5 “InterCriteria Analysis—A New Approach to Decision Making”.

References

  1. 1.
    Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues IFSs GNs 11, 1–8 (2014)Google Scholar
  2. 2.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy pairs. Notes IFS 19(3), 1–13 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Atanassov, K.: On index matrices, part 1: standard cases. Adv. Stud. Contemp. Math. 20(2), 291–302 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Atanassov, K.: On index matrices, part 2: intuitionistic fuzzy case. Proc. Jangjeon Math. Soc. 13(2), 121–126 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  6. 6.
    Atanassov, K., Atanassova, V., Gluhchev, G.: InterCriteria analysis: ideas and problems. Notes Intuitionistic Fuzzy Sets 21(1), 81–88 (2015)Google Scholar
  7. 7.
    Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors. Elsevier Scientific Publications (1991)Google Scholar
  8. 8.
    Benjamin, K.K., Ammanuel, A.N., David, A., Benjamin, Y.K.: Genetic algorithm using for a batch fermentation process identification. J. Appl. Sci. 8(12), 2272–2278 (2008)CrossRefGoogle Scholar
  9. 9.
    Blount, Z.D.: The Unexhausted Potential of E. coli. eLife 4, 2015, doi:  10.7554/eLife.05826
  10. 10.
    Button, D.K.: Differences between the kinetics of nutrient uptake by micro-organisms, growth and enzyme kinetics. Trends Biochem. Sci. 8, 121–124 (1983)CrossRefGoogle Scholar
  11. 11.
    Cantu-Paz, E.: Selection intensity in genetic algorithms with generation gaps. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 911–918. Morgan Kaufmann, Las Vegas, Nevada, USA (2000)Google Scholar
  12. 12.
    Chen, Z.-Q., Wang, R.-L.: Two efficient real-coded genetic algorithms for real parameter optimization. Int. J. Innovative Comput. Inf. Control 7(8), 4871–4883 (2011)Google Scholar
  13. 13.
    Contois, D.E.: Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous culture. J. Gen. Microbiol 21, 40–50 (1959)CrossRefGoogle Scholar
  14. 14.
    De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Doctoral Dissertation, University of Michigan, Ann Arbor, University Microfilms No. 76–9381 (1975)Google Scholar
  15. 15.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124141 (1999)CrossRefGoogle Scholar
  16. 16.
    Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison Wesley Longman, London (1989)zbMATHGoogle Scholar
  17. 17.
    Goldberg, D.E.: Real-coded genetic algorithms, virtual alphabets, and blocking. Complex. Syst. 5, 139–167 (1991)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Huang, C., Lin, H., Yang, X.: Industrial production of recombinant therapeutics in escherichia coli and its recent advancements. J. Ind. Microbiol. Biotechnol. 39, 383–399 (2012)CrossRefGoogle Scholar
  19. 19.
    Kovarova-Kovar, K., Egli, T.: Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. Rev. 62(3), 646–666 (1998)Google Scholar
  20. 20.
    Radu, V.: Application. In: Radu, Vasile (ed.) Stochastic Modeling of Thermal Fatigue Crack Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015)Google Scholar
  21. 21.
    Lobry, J.R., Flandrois, J.P., Carret, G., Pave, A.: Monod’s bacterial growth model revised. Bull. Math. Biol. 54, 117–122 (1992)CrossRefzbMATHGoogle Scholar
  22. 22.
    Luo, Y.-Z., Tang, G.-J., Wang, Z.G., Li, H.Y.: Optimization of perturbed and constrained fuel-optimal iimpulsive rendezvous using a hybrid approach. Eng. Optim. 38(8), 959–973 (2006)CrossRefGoogle Scholar
  23. 23.
    Magalhaes-Mendes, J.: A comparative study of crossover operators for genetic algorithms to solve the job shop scheduling problem. WSEAS Trans. Comput. 12(4), 164–173 (2013)Google Scholar
  24. 24.
    Mohideen, A.K., Saravanakumar, G., Valarmathi, K., Devaraj, D., Radhakrishnan, T.K.: Real-coded genetic algorithm for system identification and tuning of a modified model reference adaptive controller for a hybrid tank system. Appl. Math. Model. 37, 3829–3847 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Monod, J.: Recherches sur la Croissance des Cultures Bacteriennes. Hermann et Cie, Paris (1942) zbMATHGoogle Scholar
  26. 26.
    Nowotniak, R., Kucharski, J.: GPU-based tuning of quantum-inspired genetic algorithm for a combinatorial optimization problem. In: Proceedings of the XIV International Conference System Modeling and Control (2011)Google Scholar
  27. 27.
    Pencheva, T., Roeva, O., Hristozov, I.: Functional State Approach to Fermentation Processes Modelling. Prof. Marin Drinov Academic Publishing House, Sofia (2006)Google Scholar
  28. 28.
    Pencheva, T., Angelova, M., Atanassova, V., Roeva, O.: InterCriteria analysis of genetic algorithm parameters in parameter identification. Notes Intuitionistic Fuzzy Sets 21(2), 99–110 (2015)Google Scholar
  29. 29.
    Roeva, O., Fidanova, S., Paprzycki, M.: Population size influence on the genetic and ant algorithms performance in case of cultivation process modeling. Recent Adv. Comput. Optim. Stud. Comput. Intell. 580, 107–120 (2015)MathSciNetGoogle Scholar
  30. 30.
    Valarmathia, K., Devaraja, D., Radhakrishnanb, T.K.: Real-coded genetic algorithm for system identification and controller tuning. Appl. Math. Model. 33(8), 3392–3401 (2009)CrossRefGoogle Scholar
  31. 31.
    Zimmer, C.: Microcosm: E. coli and the New Science of Life. Pantheon Books, New York (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations