A Unified Framework for Flexible Query Answering over Heterogeneous Data Sources

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 400)


The lack of familiarity that most users have with information systems has led to a variety of methods to access data in a flexible way (such as keyword search, faceted search, and similarity search). However, capabilities of flexible query answering are hard to integrate in one system since they are based on different data representations and relies on different techniques for query answering. The problem becomes more involved if we need to query heterogeneous data sources. To address such variety in one fell swoop, we propose FleQSy, a framework that relies on a “meta” approach for accessing heterogeneous data with different methods for flexible query answering. In FleQSy structured and semi-structured data sources are modeled as graphs and query answering consists of a multi-phase process that leverages the commonalities of the various search techniques. We show the effectiveness of our approach in different application scenarios that require easy-to-use and elastic methods for data access.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ArangoDB: ArangoDB (2015).
  2. 2.
    ASF: Apache MetaModel (2015).
  3. 3.
    Atzeni, P., Bugiotti, F., Rossi, L.: Uniform access to non-relational database systems: the SOS platform. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 160–174. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    Baid, A., Rae, I., Li, J., Doan, A., Naughton, J.F.: Toward scalable keyword search over relational data. PVLDB 3(1), 140–149 (2010)Google Scholar
  5. 5.
    Borthakur, D.: Petabyte scale databases and storage systems at facebook. In: SIGMOD, pp. 1267–1268 (2013)Google Scholar
  6. 6.
    Cappellari, P., De Virgilio, R., Maccioni, A., Roantree, M.: A path-oriented RDF index for keyword search query processing. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part II. LNCS, vol. 6861, pp. 366–380. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Coffman, J., Weaver, A.C.: An empirical performance evaluation of relational keyword search techniques. TKDE 26(1), 30–42 (2014)Google Scholar
  8. 8.
    De Virgilio, R., Maccioni, A.: Distributed keyword search over RDF via MapReduce. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 208–223. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  9. 9.
    De Virgilio, R., Maccioni, A., Cappellari, P.: A linear and monotonic strategy to keyword search over RDF data. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 338–353. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    De Virgilio, R., Maccioni, A., Torlone, R.: Approximate querying of RDF graphs via path alignment. Distributed and Parallel Databases, 1–27 (2014)Google Scholar
  11. 11.
    De Virgilio, R., Maccioni, A., Torlone, R.: Graph-driven exploration of relational databases for efficient keyword search. In: Third International Workshop on Querying Graph Structured Data (EDBT/ICDT Workshops), pp. 208–215 (2014)Google Scholar
  12. 12.
    De Virgilio, R., Orsi, G., Tanca, L., Torlone, R.: Semantic data markets: a flexible environment for knowledge management. In: 20th ACM Conf. on Information and Knowledge Management, CIKM 2011, pp. 1559–1564 (2011)Google Scholar
  13. 13.
    Dmitriev, P., Serdyukov, P., Chernov, S.: Enterprise and desktop search. In: WWW, pp. 1345–1346 (2010)Google Scholar
  14. 14.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: PODS, pp. 102–113 (2001)Google Scholar
  15. 15.
    FoundationDB: FoundationDB (2015).
  16. 16.
    Ge, S., Hou, U.L., Mamoulis, N., Cheung, D.W.: Efficient all top-k computation - A unified solution for all top-k, reverse top-k and top-m influential queries. TKDE 25(5), 1015–1027 (2013)Google Scholar
  17. 17.
    Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed graph-parallel computation on natural graphs. In: OSDI, pp. 17–30 (2012)Google Scholar
  18. 18.
    Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. In: SIGMOD (2008)Google Scholar
  19. 19.
    Li, Y., Liu, Z., Zhu, H.: Enterprise search in the big data era: Recent developments and open challenges. PVLDB 7(13), 1717–1718 (2014)Google Scholar
  20. 20.
    Michel, S., Triantafillou, P., Weikum, G.: Klee: a framework for distributed top-k query algorithms. In: VLDB, pp. 637–648 (2005)Google Scholar
  21. 21.
    Papotti, P., Torlone, R.: Schema exchange: a template-based approach to data and metadata translation. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 323–337. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  22. 22.
    Qiao, L., et al.: On brewing fresh espresso: linkedin’s distributed data serving platform. In: SIGMOD, pp. 1135–1146 (2013)Google Scholar
  23. 23.
    Qin, L., Yu, J.X., Chang, L.: Keyword search in databases: the power of RDBMS. In: SIGMOD, pp. 681–694 (2009)Google Scholar
  24. 24.
    UnQL: Unql (2015).

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Università Roma TreRomeItaly

Personalised recommendations