Skip to main content

A Model for Identifying Misinformation in Online Social Networks

Part of the Lecture Notes in Computer Science book series (LNISA,volume 9415)

Abstract

Online Social Networks (OSNs) have become increasingly popular means of information sharing among users. The spread of news regarding emergency events is common in OSNs and so is the spread of misinformation related to the event. We define as misinformation any false or inaccurate information that is spread either intentionally or unintentionally. In this paper we study the problem of misinformation identification in OSNs, and we focus in particular on the Twitter social network. Based on user and tweets characteristics, we build a misinformation detection model that identifies suspicious behavioral patterns and exploits supervised learning techniques to detect misinformation. Our extensive experimental results on 80294 unique tweets and 59660 users illustrate that our approach effectively identifies misinformation during emergencies. Furthermore, our model manages to timely identify misinformation, a feature that can be used to limit the spread of the misinformation.

S. Antoniadis—Part of this work was performed when this author was at Athens University of Economics and Business.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-26148-5_32
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-26148-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas, K., Grier, C., Song, D., Paxson, V.: Suspended accounts in retrospect: an analysis of twitter spam. In: Internet Measurement Conference, pp. 243–258 (2011)

    Google Scholar 

  2. Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.Y.: Detecting and characterizing social spam campaigns. In: ACM Conference on Computer and Communications Security, pp. 681–683 (2010)

    Google Scholar 

  3. Zubiaga, A., Ji, H.: Tweet, but verify: Epistemic study of information verification on twitter (2013). CoRR, vol. abs/1312.5297

    Google Scholar 

  4. Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: Ser. WWW 2013 Companion (2013)

    Google Scholar 

  5. Castillo, C., Mendoza, M., Poblete, B.: Predicting information credibility in time-sensitive social media. Internet Research 23(5), 560–588 (2013)

    CrossRef  Google Scholar 

  6. Xia, X., Yang, X., Wu, C., Li, S., Bao, L.: Information credibility on twitter in emergency situation. In: Chau, M., Wang, G.A., Yue, W.T., Chen, H. (eds.) PAISI 2012. LNCS, vol. 7299, pp. 45–59. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  7. Bagrow, J.P., Wang, D., Barabasi, A.-L.: Collective response of human populations to large-scale emergencies (2011). CoRR, vol. abs/1106.0560

    Google Scholar 

  8. Guy, M., Earle, P., Ostrum, C., Gruchalla, K., Horvath, S.: Integration and dissemination of citizen reported and seismically derived earthquake information via social network technologies. In: Cohen, P.R., Adams, N.M., Berthold, M.R. (eds.) IDA 2010. LNCS, vol. 6065, pp. 42–53. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  9. Weka. http://www.cs.waikato.ac.nz/ml/weka/

  10. Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment in short strength detection informal text. J. Am. Soc. Inf. Sci. Technol. 61(12), 2544–2558 (2010)

    CrossRef  Google Scholar 

  11. Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In: ACSAC, pp. 1–9 (2010)

    Google Scholar 

  12. Gupta, A., Kumaraguru, P., Castillo, C., Meier, P.: Tweetcred: real-time credibility assessment of content on twitter. In: Aiello, L.M., McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8851, pp. 228–243. Springer, Heidelberg (2014)

    Google Scholar 

  13. Bosma, M., Meij, E., Weerkamp, W.: A framework for unsupervised spam detection in social networking sites. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 364–375. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  14. Anagnostopoulos, A., Bessi, A., Caldarelli, G., Vicario, M.D., Petroni, F., Scala, A., Zollo, F., Quattrociocchi, W.: Viral misinformation: The role of homophily and polarization (2014). CoRR, vol. abs/1411.2893

    Google Scholar 

  15. McCord, M., Chuah, M.: Spam detection on twitter using traditional classifiers. In: Calero, J.M.A., Yang, L.T., Mármol, F.G., García Villalba, L.J., Li, A.X., Wang, Y. (eds.) ATC 2011. LNCS, vol. 6906, pp. 175–186. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  16. Benevenuto, F., Magno, G., Rodrigues, T., Almeida, V.: Detecting spammers on twitter. In: CEAS (2010)

    Google Scholar 

  17. Budak, C., Agrawal, D.: Abbadi, A.E.: Limiting the spread of misinformation in social networks. In: WWW, pp. 665–674 (2011)

    Google Scholar 

  18. Faloutsos, M.: Detecting malware with graph-based methods: traffic classification, botnets, and facebook scams. In: WWW (Companion Volume), pp. 495–496 (2013)

    Google Scholar 

  19. Ghosh, S., Viswanath, B., Kooti, F., Sharma, N.K., Korlam, G., Benevenuto, F., Ganguly, N., Gummadi, P.K.: Understanding and combating link farming in the twitter social network. In: WWW, pp. 61–70 (2012)

    Google Scholar 

  20. Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: can we trust what we rt? In: Proceedings of the First Workshop on Social Media Analytics, ser. SOMA 2010, pp. 71–79. ACM, New York (2010)

    Google Scholar 

  21. Liu, Y., Wu, B., Wang, B., Li, G.: Sdhm: a hybrid model for spammer detection in weibo. In: 2014 IEEE/ACM International Conference on ASONAM, pp. 942–947, August 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iouliana Litou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Antoniadis, S., Litou, I., Kalogeraki, V. (2015). A Model for Identifying Misinformation in Online Social Networks. In: , et al. On the Move to Meaningful Internet Systems: OTM 2015 Conferences. OTM 2015. Lecture Notes in Computer Science(), vol 9415. Springer, Cham. https://doi.org/10.1007/978-3-319-26148-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26148-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26147-8

  • Online ISBN: 978-3-319-26148-5

  • eBook Packages: Computer ScienceComputer Science (R0)