Characterization and Construction of Rational Circles on the Integer Plane

  • Papia MahatoEmail author
  • Partha Bhowmick
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9448)


Discretization of geometric primitives in the integer space is a well-researched topic in the subject of digital geometry. In this paper, we present some novel results related to discretization of circles on the integer plane when the center and the radius are specified by arbitrary rational numbers. These results reveal elementary number-theoretic properties of rational circles on the integer plane and lead to useful characterization in terms of certain integer intervals defined by the circle parameters. We show how it finally culminates to an efficient algorithm for construction of rational circles using integer operations. Related experimental results exhibit interesting similitudes between the characteristic patterns of rational circles and those of integer circles.


Discrete circle Rational circle Discrete curve Digital geometry Number theory 


  1. 1.
    Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695–706 (1994)CrossRefGoogle Scholar
  2. 2.
    Andres, E., Roussillon, T.: Analytical description of digital circles. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 235–246. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Bera, S., Bhowmick, P., Stelldinger, P., Bhattacharya, B.: On covering a digital disc with concentric circles in \({\mathbb{Z}^2}\). Theoret. Comput. Sci. 506, 1–16 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhowmick, P., Bhattacharya, B.B.: Number-theoretic interpretation and construction of a digital circle. Discrete Appl. Math. 156(12), 2381–2399 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bhowmick, P., Pal, S.: Fast circular arc segmentation based on approximate circularity and cuboid graph. J. Math. Imaging Vis. 49(1), 98–122 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Brimkov, V.E.: Formulas for the number of \((n-2)\)-gaps of binary objects in arbitrary dimension. Discrete Appl. Math. 157(3), 452–463 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Brimkov, V.E., Barneva, R.P., Brimkov, B.: Connected distance-based rasterization of objects in arbitrary dimension. Graph. Models 73(6), 323–334 (2011)CrossRefGoogle Scholar
  8. 8.
    Fiorio, C., Jamet, D., Toutant, J.-L.: Discrete circles: An arithmetical approach with non-constant thickness. In: Latecki, L.J., Mount, D.M., Wu, A.Y. (eds.), Vision Geometry XIV, Electronic Imaging, vol. 6066, pp. 60660C. SPIE, San Jose (CA), USA (2006)Google Scholar
  9. 9.
    Fiorio, C., Toutant, J.-L.: Arithmetic discrete hyperspheres and separatingness. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 425–436. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Klette, R., Rosenfeld, R.: A: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004) Google Scholar
  11. 11.
    Nagy, B.: An algorithm to find the number of the digitizations of discs with a fixed radius. Electron. Notes Discrete Math. 20, 607–622 (2005)CrossRefGoogle Scholar
  12. 12.
    Pal, S., Bhowmick, P.: Determining digital circularity using integer intervals. J. Math. Imag. Vis. 42(1), 1–24 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Pham, S.: Digital circles with non-lattice point centers. Vis. Comput. 9(1), 1–24 (1992)CrossRefGoogle Scholar
  14. 14.
    Pitteway, M.L.V.: Integer circles, etc.–some further thoughts. Comput. Graph. Image Process. 3, 262–265 (1974)CrossRefGoogle Scholar
  15. 15.
    Toutant, J.-L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: from morphological models to analytical characterizations and topological properties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations