IWCIA 2015: Combinatorial Image Analysis pp 46-60

# Relative Convex Hull Determination from Convex Hulls in the Plane

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9448)

## Abstract

A new algorithm for the determination of the relative convex hull in the plane of a simple polygon A with respect to another simple polygon B which contains A, is proposed. The relative convex hull is also known as geodesic convex hull, and the problem of its determination in the plane is equivalent to find the shortest curve among all Jordan curves lying in the difference set of B and A and encircling A. Algorithms solving this problem known from Computational Geometry are based on the triangulation or similar decomposition of that difference set. The algorithm presented here does not use such decomposition, but it supposes that A and B are given as ordered sequences of vertices. The algorithm is based on convex hull calculations of A and B and of smaller polygons and polylines, it produces the output list of vertices of the relative convex hull from the sequence of vertices of the convex hull of A.

## Keywords

Relative convex hull Geodesic convex hull Shortest Jordan curve Shortest path Minimal length polygon Minimal perimeter polygon

## References

1. 1.
Biswas, A., Bhowmick, P., Sarkar, M., Bhattacharya, B.B.: A linear-time combinatorial algorithm to find the orthogonal hull of an object on the digital plane. Inf. Sci. 216, 176–195 (2012)
2. 2.
Ishaque, M., Toth, C.D.: Relative convex hulls in semi-dynamic arrangements. Algorithmica 68(2), 448–482 (2014)
3. 3.
Klette, G.: A recursive algorithm for calculating the relative convex hull. In: Proceedings of 25th International Conference on Image and Vision Computing, New Zealand, pp. 1-7. IEEE Computer Society (2010). doi:, 978-1-4244-9631-0/10
4. 4.
Klette, G.: Recursive calculation of relative convex hulls. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 260–271. Springer, Heidelberg (2011)
5. 5.
Klette, G.: Recursive computation of minimum-length polygons. Comput. Vis. Image Underst. 117, 386–392 (2012)
6. 6.
Klette, R., Kovalevsky, V., Yip, B.: On the length estimation of digital curves. In: SPIE Proceedings of Vision Geometry VIII, vol. 3811, pp. 117–129. SPIE (1999)Google Scholar
7. 7.
Klette, R.: Multigrid convergence of geometric features. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 318–338. Springer, Heidelberg (2002)
8. 8.
Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publ., Elsevier, USA (2004)
9. 9.
Lantuejoul, C., Beucher, S.: On the use of the geodesic metric in image analysis. J. Microsc. 121(1), 39–49 (1981)
10. 10.
Lantuejoul, C., Maisonneuve, F.: Geodesic methods in quantitative image analysis. Pattern Recoglnition 17(2), 177–187 (1984)
11. 11.
Li, F., Klette, R.: Euclidean Shortest Paths, Exact or Approximate Algorithms. Springer, London (2011)
12. 12.
Melkman, A.: On-line construction of the convex hull of a simple polyline. Inf. Process. Lett. 25, 11–12 (1987)
13. 13.
Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)
14. 14.
Munkres, J.R.: Topology, 2nd edn. Prentice Hall, USA (2000)
15. 15.
Provençal, X., Lachaud, J.-O.: Two linear-time algorithms for computing the minimum length polygon of a digital contour. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 104–117. Springer, Heidelberg (2009)
16. 16.
Reyes Becerril, H.: Versión revisada de un algorítmo que determina la cubierta convexa relativa de polígonos simples en el plano, Master Thesis. Dept. of Automatic Control, CINVESTAV-IPN, Mexico City, September 2013Google Scholar
17. 17.
Robert, L., Faugeras, O.D.: Relative 3D positioning and 3D convex hull computation from a weakly calibrated stereo pair. Image Vis. Comput. 13(3), 189–196 (1995)
18. 18.
Sklansky, J.: Recognition of convex blobs. Pattern Recognition 2, 3–10 (1970)
19. 19.
Sklansky, J.: Measuring cavity on a rectangular mosaic. IEEE Trans. Comput. C–21(12), 1355–1364 (1972)
20. 20.
Sklansky, J., Kibler, D.F.: A theory of nonuniformly digitized binary pictures. IEEE Trans. Syst. Man Cybern. 6(9), 637–647 (1976)
21. 21.
Sklansky, J., Chazin, R.L., Hansen, B.J.: Minimum perimeter polygons of digitized silhouettes. IEEE Trans. Comput. 21(3), 260–268 (1972)
22. 22.
Sloboda, F., Stoer, J.: On piecewise linear approximation of planar Jordan curves. J. Comput. Appl. Math. 55, 369–383 (1994)
23. 23.
Sloboda, F., Zatco, B., Stoer, J.: On approximation of planar one-dimensional continua. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Geometry, pp. 113–160. Springer, Singapore (1998)Google Scholar
24. 24.
Toussaint, G.T.: An optimal algorithm for computing the relative convex hull of a set of points in a polygon. In: Proceedings of EURASIP, Signal Processing III: Theories and Applications, Part 2, pp. 853–856. North-Holland (1986)Google Scholar
25. 25.
Toussaint, G.T.: Computing geodesic properties inside a simple polygon. Invited paper, Special Issue on Geometric Reasoning, Revue D’Intelligence Artificielle 3(2), 9–42 (1989)Google Scholar
26. 26.
Toussaint, G.T.: On separating two simple polygons by a single translation. Discrete Comput. Geom. 4(1), 265–278 (1989)
27. 27.
Wiederhold, P., Villafuerte, M.: Triangulation of cross-sectional digital straights segments and minimum length polygons for surface area estimation. In: Wiederhold, P., Barneva, R.P. (eds.) Progress in Combinatorial Image Analysis, pp. 79–92. Research Publishing Services, Singapore (2009)Google Scholar
28. 28.
Yu, L., Klette, R.: An approximative calculation of relative convex hulls for surface area estimation of 3D digital objects. ICPR 1, 131–134 (2002)Google Scholar 