Advertisement

Equivalent Sequential and Parallel Subiteration-Based Surface-Thinning Algorithms

  • Kálmán PalágyiEmail author
  • Gábor Németh
  • Péter Kardos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9448)

Abstract

Thinning is a frequently applied technique for extracting skeletons or medial surfaces from volumetric binary objects. It is an iterative object reduction: border points that satisfy certain topological and geometric constraints are deleted in a thinning phase. Sequential thinning algorithms may alter just one point at a time, while parallel algorithms can delete a set of border points simultaneously. Two thinning algorithms are said to be equivalent if they can produce the same result for each input binary picture. This work shows that it is possible to construct subiteration-based equivalent sequential and parallel surface-thinning algorithms. The proposed four pairs of algorithms can be implemented directly on a conventional sequential computer or on a parallel computing device. All of them preserve topology for (26, 6) pictures.

Keywords

Discrete geometry Discrete topology Skeletons Subiteration-based thinning Equivalent thinning algorithms 

Notes

Acknowledgements

This work was supported by the grant OTKA K112998 of the National Scientific Research Fund.

References

  1. 1.
    Bertrand, G., Couprie, M.: Transformations topologiques discrètes. In: Coeurjolly, D., Montanvert, A., Chassery, J. (eds.) Géométrie Discrète et Images Numériques, pp. 187–209. Hermès Science Publications, Paris (2007)Google Scholar
  2. 2.
    Bertrand, G., Couprie, M.: New 2D parallel thinning algorithms based on critical kernels. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 45–59. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  3. 3.
    Gong, W.X., Bertrand, G.: A simple parallel 3D thinning algorithm. In: Proceedings of the 10th IEEE International Conference Pattern Recognition, ICPR 1990, pp. 188–190 (1990)Google Scholar
  4. 4.
    Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 145–179. Elsevier Science B.V., Amsterdam (1996)CrossRefGoogle Scholar
  5. 5.
    Kong, T.Y.: On topology preservation in 2D and 3D thinning. Int. J. Pattern Recogn. Artif Intell. 9, 813–844 (1995)CrossRefGoogle Scholar
  6. 6.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989)CrossRefGoogle Scholar
  7. 7.
    Kovalevsky, V.A.: Geometry of Locally Finite Spaces. Publishing House, Berlin (2008)Google Scholar
  8. 8.
    Lam, L., Lee, S.-W., Suen, S.-W.: Thinning methodologies - a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992)CrossRefGoogle Scholar
  9. 9.
    Lee, T., Kashyap, R.L., Chu, C.: Building skeleton models via 3D medial surface/axis thinning algorithms. CVGIP: Graph. Models Image Process. 56, 462–478 (1994)Google Scholar
  10. 10.
    Lohou, C., Bertrand, G.: A 3D 12-subiteration thinning based on P-simple points. Discrete Appl. Math. 139, 171–195 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lohou, C., Bertrand, G.: A 3D 6-subiteration curve thinning algorithm based on P-simple points. Discrete Appl. Math. 151, 198–228 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ma, C.M.: On topology preservation in 3D thinning. CVGIP: Image Underst. 59, 328–339 (1994)CrossRefGoogle Scholar
  13. 13.
    Malandain, G., Bertrand, G.: Fast characterization of 3D simple points. In: International Conference on Pattern Recognition, ICPR 1992, pp. 232–235 (1992)Google Scholar
  14. 14.
    Manzanera, A., Bernard, T.M., Pretêux, F., Longuet, B.: n-dimensional skeletonization: a unified mathematical framework. J. Electron. Imaging 11, 25–37 (2002)CrossRefGoogle Scholar
  15. 15.
    Palágyi, K., Kuba, A.: A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recogn. Lett. 19, 613–627 (1998)zbMATHCrossRefGoogle Scholar
  16. 16.
    Palágyi, K., Kuba, A.: Directional 3D thinning using 8 subiterations. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 325–336. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  17. 17.
    Palágyi, K., Kuba, A.: A parallel 3D 12-subiteration thinning algorithm. Graph. Models Image Process. 61, 199–221 (1999)CrossRefGoogle Scholar
  18. 18.
    Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theoret. Comput. Sci. 406, 119–135 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Palágyi, K., Németh, G., Kardos, P.: Topology preserving parallel 3D thinning algorithms. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms. LNCVB, pp. 165–188. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Palágyi, K.: Equivalent 2D sequential and parallel thinning algorithms. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 91–100. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  21. 21.
    Palágyi, K.: Equivalent sequential and parallel reductions in arbitrary binary pictures. Int. J. Pattern Recogn. Artif. Intell. 28, 1460009-1–1460009-16 (2014)Google Scholar
  22. 22.
    Ranwez, V., Soille, P.: Order independent homotopic thinning for binary and grey tone anchored skeletons. Pattern Recogn. Lett. 23, 687–702 (2002)zbMATHCrossRefGoogle Scholar
  23. 23.
    Raynal, B., Couprie, M.: Isthmus-based 6-directional parallel thinning algorithms. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 175–186. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  24. 24.
    Saha, P.K., Chaudhuri, B.B.: Detection of 3D simple points for topology preserving transformations with application to thinning. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1028–1032 (1994)CrossRefGoogle Scholar
  25. 25.
    Siddiqi, K., Pizer, S. (eds.): Medial Representations - Mathematics, Algorithms and Applications. Computational Imaging and Vision, vol. 37. Springer, New York (2008) zbMATHGoogle Scholar
  26. 26.
    Suen, C.Y., Wang, P.S.P. (eds.): Thinning Methodologies for Pattern Recognition. Series in Machine Perception and Artificial Intelligence, vol. 8. World Scientific, Singapore (1994) zbMATHGoogle Scholar
  27. 27.
    Tsao, Y.F., Fu, K.S.: A parallel thinning algorithm for 3-D pictures. Comput. Graph. Image Process. 17, 315–331 (1981)CrossRefGoogle Scholar
  28. 28.
    Xie, W., Thompson, P., Perucchio, R.: A topology-preserving parallel 3D thinning algorithm for extracting the curve skeleton. Pattern Recogn. 36, 1529–1544 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kálmán Palágyi
    • 1
    Email author
  • Gábor Németh
    • 1
  • Péter Kardos
    • 1
  1. 1.Department of Image Processing and Computer GraphicsUniversity of SzegedSzegedHungary

Personalised recommendations