Advertisement

Knot Detection from Accumulation Map by Polar Scan

  • Adrien KrähenbühlEmail author
  • Bertrand Kerautret
  • Fabien Feschet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9448)

Abstract

This paper proposes to improve the approach presented in Krähenbühl et al. [11] to build automatic methods for the wood knot detection from X-Ray CT scanner images. The major drawbacks of the previous method mostly depends on the variety of the distribution of knots and their geometric shapes. Our aim is to extend the robustness by performing the accumulation process of Z-Motion differently and by suppressing the whorl distribution constraint. This is achieved both through a polar Z-Motion accumulation and an aggregation process of connected components related to maxima localization in the accumulation space. The experimental results are in favor of an increase in the robustness while being more sensitive to small and isolated knots. This opens the way to a method fully independent of wood species.

Keywords

Wood knots X-Ray CT scanners Accumulation map 

References

  1. 1.
    DGtal: Digital Geometry tools and algorithms library. http://libdgtal.org
  2. 2.
    Aguilera, C., Sanchez, R., Baradit, E.: Detection of knots using x-ray tomographies and deformable contours with simulated annealing. Wood Res. 53, 57–66 (2008)Google Scholar
  3. 3.
    Baño, V., Arriaga, F., Guaita, M.: Determination of the influence of size and position of knots on load capacity and stress distribution in timber beams of pinus sylvestris using finite element model. Biosyst. Eng. 114(3), 214–222 (2013)CrossRefGoogle Scholar
  4. 4.
    Boukadida, H., Longuetaud, F., Colin, F., Freyburger, C., Constant, T., Leban, J.M., Mothe, F.: Pithextract: a robust algorithm for pith detection in computer tomography images of wood - application to 125 logs from 17 tree species. Comput. Electron. Agric. 85, 90–98 (2012)CrossRefGoogle Scholar
  5. 5.
    Funck, J., Zhong, Y., Butler, D., Brunner, C., Forrer, J.: Image segmentation algorithms applied to wood defect detection. Comput. Electron. Agric. 41(1–3), 157–179 (2003). developments in Image Processing and Scanning of WoodCrossRefGoogle Scholar
  6. 6.
    Johansson, E., Johansson, D., Skog, J., Fredriksson, M.: Automated knot detection for high speed computed tomography on pinus sylvestris l. and picea abies (l.) karst. using ellipse fitting in concentric surfaces. Comput. Electron. Agric. 96, 238–245 (2013)CrossRefGoogle Scholar
  7. 7.
    Kerautret, B.: Knot detection from accumulation map by polar scan: Online demonstration (2015). http://ipol-geometry.loria.fr/kerautre/ipol_demo/KnotDetectIPOLDemo/
  8. 8.
    Krähenbühl, A.: TKDetection (2012). https://github.com/akrah/TKDetection/
  9. 9.
    Krähenbühl, A., Kerautret, B., Debled-Rennesson, I.: Knot segmentation in noisy 3D images of wood. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 383–394. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Krähenbühl, A., Kerautret, B., Debled-Rennesson, I., Longuetaud, F., Mothe, F.: Knot detection in X-Ray CT images of wood. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 209–218. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Krähenbühl, A., Kerautret, B., Debled-Rennesson, I., Mothe, F., Longuetaud, F.: Knot segmentation in 3D CT images of wet wood. Pattern Recognit. 1, 1–17 (2014)Google Scholar
  12. 12.
    Krähenbühl, A., Roussel, J.R., Kerautret, B., Debled-Rennesson, I., Mothe, F., Longuetaud, F.: Segmentation robuste de nœuds partir de coupes tangentielles issues d’images tomographiques de bois. In: Actes de la conférence RFIA 2014, June 2014Google Scholar
  13. 13.
    Moberg, L.: Models of internal knot properties for picea abies. For. Ecol. Manage. 147(2–3), 123–138 (2001)CrossRefGoogle Scholar
  14. 14.
    Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Todoroki, C., Lowell, E., Dykstra, D.: Automated knot detection with visual post-processing of douglas-fir veneer images. Comput. Electron. Agric. 70(1), 163–171 (2010)CrossRefGoogle Scholar
  16. 16.
    Wells, P., Som, S., Davis, J.: Automated feature extraction from tomographic images of wood. In: Image Computing: Techniques and Applications (DICTA), pp. 56–62. No. 1, Melbourne, Australie, December 1991Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Adrien Krähenbühl
    • 1
    • 2
    Email author
  • Bertrand Kerautret
    • 1
    • 2
  • Fabien Feschet
    • 3
  1. 1.Université de Lorraine, LORIA, UMR 7503Vandoeuvre-lè-NancyFrance
  2. 2.CNRS, LORIA, UMR 7503Vandoeuvre-lès-NancyFrance
  3. 3.IGCNC - EA 7282Université Clermont Auvergne, Université d’AuvergneClermont-FerrandFrance

Personalised recommendations