Incremental Updating of 3D Topological Maps to Describe Videos

  • Guillaume DamiandEmail author
  • Sylvain Brandel
  • Donatello Conte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9448)


A topological map is an efficient mathematical model for representing an image subdivision where all cells and adjacency relations between elements are represented. It has been proved to be a very good tool for video processing when video is seen as a 3D image. However the construction of a topological map for representing a video needs the availability of the complete image sequence. In this paper we propose a procedure for online updating a topological map in order to build it as the video is produced, allowing to use it in real time.


3D topological maps Video processing Combinatorial maps 



This work has been partially supported by the French National Agency (ANR), project SoLStiCe ANR-13-BS02-0002-01.


  1. 1.
    3DTopoMap: Topological 3d image processing software.
  2. 2.
    Bertrand, Y., Damiand, G., Fiorio, C.: Topological map: minimal encoding of 3D segmented images. In: Proceedings of International Workshop on Graph-Based Representations in Pattern Recognition, pp. 64–73, Ischia, Italy, May 2001Google Scholar
  3. 3.
    Conte, D., Damiand, G.: Remove noise in video with 3D topological maps. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 213–222. Springer, Heidelberg (2014) Google Scholar
  4. 4.
    Damiand, G.: Topological model for 3d image representation: definition and incremental extraction algorithm. Comput. Vis. Image Underst. 109(3), 260–289 (2008)CrossRefGoogle Scholar
  5. 5.
    Dupas, A., Damiand, G.: First results for 3D image segmentation with topological map. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 507–518. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  6. 6.
    Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing. A. K. Peters/CRC Press, Boca Raton (2014) CrossRefGoogle Scholar
  7. 7.
    Damiand, G., Resch, P.: Split and merge algorithms defined on topological maps for 3D image segmentation. Graph. Models 65(1–3), 149–167 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Dupas, A.: Opérations et Algorithmes pour la Segmentation Topologique d’Images 3D. Thèse de doctorat, Université de Poitiers, Novembre 2009Google Scholar
  9. 9.
    Gonno, Y., Nishio, F., Haraoka, K., Yamagishi, Y.: Metadata structuring of audiovisual data streams on MPEG-2 system. In: Metastructures, August 1998Google Scholar
  10. 10.
    Hunter, J., Armstrong, L.: A comparison of schemas for video metadata representation. Comput. Netw. 31(1116), 1431–1451 (1999)CrossRefGoogle Scholar
  11. 11.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  12. 12.
    Koprinska, I., Carrato, S.: Temporal video segmentation: asurvey. Signal Process.: Image Commun. 16, 477–500 (2001)Google Scholar
  13. 13.
    Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of video processing techniques for traffic applications. Image Vis. Comput. 21, 359–381 (2003)CrossRefGoogle Scholar
  14. 14.
    Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. Int. J. Comput. Geom. Appl. 4(3), 275–324 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, X., Zheng, Y.: Patch-based video processing: a variational bayesian approach. IEEE Trans. Circ. Syst. Video Technol. 19(1), 27–40 (2009)CrossRefGoogle Scholar
  16. 16.
    Maugey, T., Ortega, A., Frossard, P.: Graph-based representation and coding of multiview geometry. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1325–1329 (2013)Google Scholar
  17. 17.
    Ngo, C.W., Ma, Y.F., Zhang, H.J.: Video summarization and scene detection by graph modeling. IEEE Trans. Circ. Syst. Video Technol. 15, 296–305 (2005)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Rosenfeld, A.: Adjacency in digital pictures. Inf. Control 26(1), 24–33 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Wang, J., Adelson, E.: Representing moving images with layers. IEEE Trans. Image Process. 3(5), 625–638 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Guillaume Damiand
    • 1
    Email author
  • Sylvain Brandel
    • 1
  • Donatello Conte
    • 2
  1. 1.Université de Lyon, CNRS, LIRIS, UMR 5205VilleurbanneFrance
  2. 2.Université François-Rabelais de Tours, LI EA 6300ToursFrance

Personalised recommendations