Reconstruction of Bicolored Images

  • Alain Billionnet
  • Fethi Jarray
  • Ghassen TligEmail author
  • Ezzeddine Zagrouba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9448)


In this paper, we present an integer programming approach to estimating a discrete bi-colored image from its two-color horizontal and vertical projections. The two-color projections basically refer to the number of pixels per column having colors \(c_1\) and \(c_2\), and likewise for each row as well. The aim of the integer programming approach is to minimize the number of conflict pixels, i.e. the number of pixels that have color \(c_1\) as well as \(c_2\). Since the problem is NP-complete, we give a survey of the literature and we propose a new integer programming formulation of this problem.


Discrete tomography Reconstruction bicolored images Integer programming 


  1. 1.
    Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: The reconstruction of polyominoes from their orthogonal projections. Theor. Comput. Sci. 155, 321–347 (1996)zbMATHCrossRefGoogle Scholar
  2. 2.
    Barcucci, E., Brocchi, S.: Solving multicolor discrete tomography problems by using prior knowledge. Fundamenta Informaticae 125, 1–16 (2013)MathSciNetGoogle Scholar
  3. 3.
    Barcucci, E., Brocchi, S., Frosini, A.: Solving the two color problem: an heuristic algorithm. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 298–310. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Billionnet, A., Jarray, F., Tlig, G., Zagrouba, E.: Reconstructing convex matrices by integer programming approaches. J. Math. Model. Algor. 12, 329–343 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Brocchi, S., Frosini, A., Rinaldi, S.: A reconstruction algorithm for a subclass of instances of the 2-color problem. Theor. Comput. Sci. 412, 4795–4804 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Costa, M.C., Jarray, F., Picouleau, C.: An acyclic days-off scheduling problem. 4’OR: Q. J. Oper. Res. 4(1), 73–85 (2006)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Costa, M.C., de Werra, D., Picouleau, C., Schindl, D.: A solvable case of image reconstruction in discrete tomography. Discrete Appl. Math. 148, 240–245 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Costa, M.C., Jarray, F., Picouleau, C.: Reconstruction of binary matrices under adjacency constraints. Electron. Notes Discrete Math. 20, 281–297 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Costa, M.C., de Werra, D., Picouleau, C.: Using graphs for some discrete tomography problems. Discrete Appl. Math. 154, 35–46 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Chrobak, M., Dürr, C.: Reconstructing hv-convex polyominoes from orthogonal projection. Inf. Process. Lett. 69, 283–289 (1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    Dahl, G., Fatberg, T.: Optimization and reconstruction of hv-convex (0,1)-matrices. Electron. Notes Discrete Math. 12, 58–69 (2003)CrossRefGoogle Scholar
  13. 13.
    Del Lungo, A., Frosini, A., Nivat, M., Vuillon, L.: Discrete tomography: reconstruction under periodicity constraints. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) CALP 2002. LNCS, vol. 2380, pp. 38–56. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Dürr, C., Guiñez, F., Matamala, M.: Reconstructing 3-colored grids from horizontal and vertical projections Is NP-hard. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 776–787. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Gale, D.: A theorem on flows in networks. Pac. J. Math. 7(2), 1073–1082 (1957)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Herman, G.T., Kuba, A.: Discrete Tomography: Foundations. Algorithms and Applications. Birkhäuser, Boston (1999)zbMATHCrossRefGoogle Scholar
  17. 17.
    Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser, Boston (2007)zbMATHCrossRefGoogle Scholar
  18. 18.
    Jarray, F.: A 4-day or a 3-day workweeks scheduling problem with a given workforce size. APJOR: Asian-Pac. J. Oper. Res. 26(5), 1–12 (2009)MathSciNetGoogle Scholar
  19. 19.
    Jarray, F.: A Lagrangian approach to reconstruct bicolored images from discrete orthogonal projections. Pure Math. Appl. 20, 17–25 (2009)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Jarray, F., Tlig, G.: Approximating bicolored images from discrete projections. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 311–320. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Picouleau, C., Brunetti, S., Frosini, A.: Reconstructing a binary matrix under timetabling constraints. Electron. Notes Discrete Math. 20, 99–112 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ryser, H.R.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9, 371–377 (1957)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Woeginger, G.J.: The reconstruction of polyominoes from their orthogonal projections. Inf. Process. Lett. 77, 225–229 (2001)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alain Billionnet
    • 1
  • Fethi Jarray
    • 1
    • 3
  • Ghassen Tlig
    • 1
    • 3
    Email author
  • Ezzeddine Zagrouba
    • 2
  1. 1.Cedric-CNAMParisFrance
  2. 2.Higher Institute of Computer ScienceTunisTunisia
  3. 3.Higher Institute of Computer ScienceMedenineTunisia

Personalised recommendations