Advertisement

Fuzzy Connectedness Segmentation: A Brief Presentation of the Literature

  • Gabor T. HermanEmail author
  • T. Yung Kong
  • Krzysztof Chris Ciesielski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9448)

Abstract

For any positive integer M, M-object fuzzy connectedness (FC) segmentation is a methodology for finding M objects in a digital image based on user-specified seed points and user-specified functions, called (fuzzy) affinities, which map each pair of image points to a value in the real interval [0, 1]. FC segmentation has been used with considerable success on biomedical and other images. We provide a brief presentation of the literature on the topic of FC segmentation.

Keywords

Segmentation Digital image Fuzzy connectedness Fuzzy affinity Seed points 

References

  1. 1.
    Badura, P., Pietka, E.: Soft computing approach to 3D lung nodule segmentation in CT. Comput. Biol. Med. 53, 230–243 (2014)CrossRefGoogle Scholar
  2. 2.
    Bejar, H.H.C., Miranda, P.A.V.: Oriented relative fuzzy connectedness: theory, algorithms, and applications in image segmentation. In: 27th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 304–311. IEEE Computer Society, Washington, DC (2014)Google Scholar
  3. 3.
    Carvalho, B.M., Garduño, E., Santos, I.O.: Skew divergence-based fuzzy segmentation of rock samples. J. Phys. Conf. Ser. 490, 012010 (2014)CrossRefGoogle Scholar
  4. 4.
    Carvalho, B.M., Gau, C.J., Herman, G.T., Kong, T.Y.: Algorithms for fuzzy segmentation. Pattern Anal. Appl. 2, 73–81 (1999)CrossRefGoogle Scholar
  5. 5.
    Carvalho, B.M., Herman, G.T., Kong, T.Y.: Simultaneous fuzzy segmentation of multiple objects. Electron. Notes Discrete Math. 12, 3–22 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carvalho, B.M., Herman, G.T., Kong, T.Y.: Simultaneous fuzzy segmentation of multiple objects. Discrete Appl. Math. 151, 55–77 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Carvalho, B.M., Souza, T.S., Garduño, E.: Texture fuzzy segmentation using adaptive affinity functions. In: 27th ACM Symposium on Applied Computing, pp. 51–53. ACM, New York (2012)Google Scholar
  8. 8.
    Chen, L.: 3-D fuzzy digital topology and its application. Geophys. Prospect. Petrol. 24(2), 86–89 (1985). [In Chinese]Google Scholar
  9. 9.
    Chen, L.: The \(\lambda \)-connected segmentation algorithm and the optimal algorithm for split-and-merge segmentation. Chin. J. Comput. 14, 321–331 (1991). [In Chinese]Google Scholar
  10. 10.
    Chen, L., Berkey, F.T., Johnson, S.A.: Application of a fuzzy object search technique to geophysical data processing. In: SPIE 2180, Nonlinear Image Processing V, pp. 300–309. SPIE, Bellingham, WA (1994)Google Scholar
  11. 11.
    Chen, L., Cheng, H., Zhang, J.: Fuzzy subfiber and its application to seismic lithology classification. Inform. Sci. Appl. 1, 77–95 (1994)zbMATHGoogle Scholar
  12. 12.
    Ciesielski, K.C., Herman, G.T., Kong, T.Y.: General theory of fuzzy connectedness segmentations. http://math.wvu.edu/~kcies/publications.html (Submitted)
  13. 13.
    Ciesielski, K.C., Miranda, P.A.V., Falcão, A.X., Udupa, J.K.: Joint graph cut and relative fuzzy connectedness image segmentation algorithm. Med. Image Anal. 17, 1046–1057 (2013)CrossRefGoogle Scholar
  14. 14.
    Ciesielski, K.C., Udupa, J.K.: Affinity functions in fuzzy connectedness based image segmentation I: equivalence of affinities. Comput. Vis. Image Und. 114, 146–154 (2010)CrossRefGoogle Scholar
  15. 15.
    Ciesielski, K.C., Udupa, J.K.: Affinity functions in fuzzy connectedness based image segmentation II: defining and recognizing truly novel affinities. Comput. Vis. Image Und. 114, 155–166 (2010)CrossRefGoogle Scholar
  16. 16.
    Ciesielski, K.C., Udupa, J.K.: Region-based segmentation: fuzzy connectedness, graph cut, and other related algorithms. In: Deserno, T.M. (ed.) Biomedical Image Processing, pp. 251–278. Springer, Berlin (2011)Google Scholar
  17. 17.
    Ciesielski, K.C., Udupa, J.K., Falcão, A.X., Miranda, P.A.V.: Fuzzy connectedness image segmentation in graph cut formulation: a linear-time algorithm and a comparative analysis. J. Math. Imaging Vis. 44, 375–398 (2012)zbMATHCrossRefGoogle Scholar
  18. 18.
    Ciesielski, K.C., Udupa, J.K., Saha, P.K., Zhuge, Y.: Iterative relative fuzzy connectedness for multiple objects, allowing multiple seeds. Comput. Vis. Image Und. 107, 160–182 (2007)CrossRefGoogle Scholar
  19. 19.
    Deserno, T.M. (ed.): Biomedical Image Processing. Springer, Berlin (2011)zbMATHGoogle Scholar
  20. 20.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. 26, 19–29 (2004)CrossRefGoogle Scholar
  22. 22.
    Garduño, E., Herman, G.T.: Parallel fuzzy segmentation of multiple objects. Int. J. Imag. Syst. Tech. 18, 336–344 (2009)CrossRefGoogle Scholar
  23. 23.
    Garduño, E., Wong-Barnum, M., Volkmann, N., Ellisman, M.H.: Segmentation of electron tomographic data sets using fuzzy set theory principles. J. Struct. Biol. 162, 368–379 (2008)CrossRefGoogle Scholar
  24. 24.
    Gulyás, G., Dombi, J.: Computing equivalent affinity classes in a fuzzy connectedness framework. Acta Cybernetica 21, 609–628 (2014)MathSciNetGoogle Scholar
  25. 25.
    Herman, G.T., Carvalho, B.M.: Multiseeded segmentation using fuzzy connectedness. IEEE Trans. Pattern Anal. 23, 460–474 (2001)CrossRefGoogle Scholar
  26. 26.
    Palágyi, K., Tschirren, J., Hoffman, E.A., Sonka, M.: Quantitative analysis of pulmonary airway tree structures. Comput. Biol. Med. 36, 974–996 (2006)CrossRefGoogle Scholar
  27. 27.
    Saha, P.K., Udupa, J.K.: Iterative relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2000), pp. 28–35. IEEE Computer Society, Washington, DC (2000)Google Scholar
  28. 28.
    Saha, P.K., Udupa, J.K.: Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation. Comput. Vis. Image Und. 82, 42–56 (2001)zbMATHCrossRefGoogle Scholar
  29. 29.
    Siebra, H., Carvalho, B.M., Garduño, E.: Fuzzy clustering of color textures using skew divergence and compact histograms: segmenting thin rock sections. J. Phys. Conf. Ser. 574, 012116 (2015)CrossRefGoogle Scholar
  30. 30.
    Tschirren, J., Hoffman, E.A., Mclennan, G., Sonka, M.: Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans. Med. Imaging 24, 1529–1539 (2005)CrossRefGoogle Scholar
  31. 31.
    Udupa, J.K., Saha, P.K., Lotufo, R.A.: Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. IEEE Trans. Pattern Anal. 24, 1485–1500 (2002)CrossRefGoogle Scholar
  32. 32.
    Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Model. Im. Proc. 58, 246–261 (1996)CrossRefGoogle Scholar
  33. 33.
    Zhuge, Y., Udupa, J.K., Saha, P.K.: Vectorial scale-based fuzzy connected image segmentation. Comput. Vis. Image Und. 101, 177–193 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gabor T. Herman
    • 1
    Email author
  • T. Yung Kong
    • 1
    • 2
  • Krzysztof Chris Ciesielski
    • 3
  1. 1.Computer Science PhD Program, The Graduate CenterCity University of New YorkNew YorkUSA
  2. 2.Computer Science DepartmentQueens College, City University of New YorkFlushingUSA
  3. 3.Department of MathematicsWest Virginia UniversityMorgantownUSA

Personalised recommendations