Efficient Dominant Point Detection Based on Discrete Curve Structure

  • Phuc Ngo
  • Hayat Nasser
  • Isabelle Debled-RennessonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9448)


In this paper, we investigate the problem of dominant point detection on digital curves which consists in finding points with local maximum curvature. Thanks to previous studies of the decomposition of curves into sequence of discrete structures [5, 6, 7], namely maximal blurred segments of width \(\nu \) [13], an initial algorithm has been proposed in [14] to detect dominant points. However, an heuristic strategy is used to identify the dominant points. We now propose a modified algorithm without heuristics but a simple measure of angle. In addition, an application of polygonal simplification is as well proposed to reduce the number of detected dominant points by associating a weight to each of them. The experimental results demonstrate the efficiency and robustness of the proposed method.


Dominant point Polygonal simplification Discrete structure 


  1. 1.
    Aguilera-Aguilera, E.J., Poyato, Á.C., Madrid-Cuevas, F.J., Carnicer, R.M.: The computation of polygonal approximations for 2D contours based on a concavity tree. J. Vis. Comm. Image Represent. 25(8), 1905–1917 (2014)CrossRefGoogle Scholar
  2. 2.
    Attneave, E.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183–193 (1954)CrossRefGoogle Scholar
  3. 3.
    Backes, A.R., Bruno, O.M.: Polygonal approximation of digital planar curves through vertex betweenness. Inf. Sci. 222, 795–804 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1590–1602 (2007)CrossRefGoogle Scholar
  5. 5.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006)CrossRefGoogle Scholar
  6. 6.
    Faure, A., Buzer, L., Feschet, F.: Tangential cover for thick digital curves. Pattern Recogn. 42(10), 2279–2287 (2009)zbMATHCrossRefGoogle Scholar
  7. 7.
    Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  8. 8.
    Feschet, F.: Fast guaranteed polygonal approximations of closed digital curves. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 910–919. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  9. 9.
    Marji, M., Siy, P.: A new algorithm for dominant points detection and polygonization of digital curves. Pattern Recogn. 36(10), 2239–2251 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Marji, M., Siy, P.: Polygonal representation of digital planar curves through dominant point detection - nonparametric algorithm. Pattern Recogn. 37(11), 2113–2130 (2004)CrossRefGoogle Scholar
  11. 11.
    Masood, A.: Dominant point detection by reverse polygonization of digital curves. Image Vis. Comput. 26(5), 702–715 (2008)CrossRefGoogle Scholar
  12. 12.
    Masood, A.: Optimized polygonal approximation by dominant point deletion. Pattern Recogn. 41(1), 227–239 (2008)zbMATHCrossRefGoogle Scholar
  13. 13.
    Nguyen, T.P., Debled-Rennesson, I.: Curvature Estimation in Noisy Curves. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 474–481. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  14. 14.
    Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recogn. 44(1), 32–44 (2011)zbMATHCrossRefGoogle Scholar
  15. 15.
    Reveillès, J.P.: Géométrie discrète, calculs en nombre entiersgorithmique, thèse d’état. Université Louis Pasteur, Strasbourg (1991)Google Scholar
  16. 16.
    Rosenfeld, A., Johnston, E.: Angle detection on digital curves. IEEE Trans. Comput. 22, 875–878 (1973)CrossRefGoogle Scholar
  17. 17.
    Rosin, P.L.: Techniques for assessing polygonal approximations of curves. IEEE Trans. Pattern Anal. Mach. Intell. 19(6), 659–666 (1997)CrossRefGoogle Scholar
  18. 18.
    Sarkar, D.: A simple algorithm for detection of significant vertices for polygonal approximation of chain-coded curves. Pattern Recogn. Lett. 14(12), 959–964 (1993)CrossRefGoogle Scholar
  19. 19.
    Teh, C., Chin, R.: On the detection of dominant points on the digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 2, 859–872 (1989)CrossRefGoogle Scholar
  20. 20.
    Wang, B., Brown, D., Zhang, X., Li, H., Gao, Y., Cao, J.: Polygonal approximation using integer particle swarm optimization. Inf. Sci. 278, 311–326 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Phuc Ngo
    • 1
    • 2
  • Hayat Nasser
    • 1
    • 2
  • Isabelle Debled-Rennesson
    • 1
    • 2
    Email author
  1. 1.Université de Lorraine, LORIA, UMR 7503Vandoeuvre-lès-NancyFrance
  2. 2.CNRS, LORIA, UMR 7503Vandoeuvre-lès-NancyFrance

Personalised recommendations