Osmotic Event Detection and Processing for the Sensing-Liquid Enterprise

  • Artur FelicEmail author
  • Spiros Alexakis
  • Carlos Agostinho
  • Catarina Marques-Lucena
  • Klaus Fischer
  • Michele Sesana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9416)


The Sensing-Liquid Enterprise paradigm enhances sensing capabilities of the Sensing Enterprise with fuzzy boundaries of the Liquid Enterprise by interconnecting real, virtual and digital worlds through semi-permeable membrane behavior. Shadow images of the different worlds need to be kept consistent. Osmotic data flows between the real, digital and virtual world allow events to break out of their inner world behavior and to advance to inter-world events.

This paper combines semantic web technologies and complex event processing to enable osmotic event detection and processing for the Sensing-Liquid Enterprise. Events are enriched with semantic information and examined for inter-world relevance. The presented approach is accompanied with its application in the OSMOSE Project.


Sensing Enterprise Sensing-Liquid Enterprise Semantic web Complex event processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    FInES Research Roadmap Force: FInES Reasearch Roadmap 2025 (2012). (accessed January 1, 2015)
  2. 2.
    OSMOSE Consortium: The OSMOSE Project (2013). (accessed July 24, 2015)
  3. 3.
    Agostinho, C., Jardim-Goncalves, R.: Sustaining interoperability of networked liquid-sensing enterprises: A complex systems perspective. Annu. Rev. Control (2015)Google Scholar
  4. 4.
    Agostinho, C., Sesana, M., Jardim-Gonçalves, R., Gusmeroli, S.: Model-driven service engineering towards the manufacturing liquid-sensing enterprise. In: 4th Int. Cce Model. Softw. Dev. (2015)Google Scholar
  5. 5.
    ISA Interoperability Solutions for European Public Administrations: European Interoperability Framework (EIF) for European public services (2010).
  6. 6.
    Meihami, B., Meihami, H.: Knowledge management a way to gain a competitive advantage in firms (evidence of manufacturing companies). In: Int. Lett. Soc. Humanist. Sci., Nr. 14, pp. 80–91 (2014)Google Scholar
  7. 7.
    Leung, N.K., Lau, S.K., Fan, J.: An ontology-based collaborative knowledge management network to enhance the reusability of inter-organizational knowledge. In: Commun. IIMA, Nr. 9/1, pp. 61–78 (2009)Google Scholar
  8. 8.
    Ben Abbès, S., Scheuermann, A., Meilender, T., d’Aquin, M.: Characterizing modular ontologies. In: Proc. of the 6th International Workshop on Modular Ontologies (2012)Google Scholar
  9. 9.
    Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Etzion, O., Niblett, P.: Event Processing in Action. Manning Pub. Co (2011)Google Scholar
  11. 11.
    Michelson, B.M.: Event-Driven Architecture Overview. Patricia Seybold Group 2 (2006)Google Scholar
  12. 12.
    Shaw, R., Troncy, R., Hardman, L.: LODE: linking open descriptions of events. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 153–167. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Natschläger, C.: Towards a BPMN 2.0 ontology. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 1–15. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web (2001).
  15. 15.
    Schaaf, M., Grivas, S.G., Ackermann, D., Diekmann, A., Koschel, A., Astrova, I.: Semantic complex event processing. In: Recent Researches in Applied Information Science (2012)Google Scholar
  16. 16.
  17. 17.
    Delgado, A., Ruiz, F., García-Rodríguez de Guzmán, I., Piattini, M.: MINERVA: model drIveN and sErvice oRiented framework for the continuous business process improVement and relAted tools. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 456–466. Springer, Heidelberg (2010)Google Scholar
  18. 18.
    Larrucea, X., Díez, A.B.G., Mansell, J.X.: Practical model driven development process. In: Proc. 2nd Eur. Work. Model Driven Archit. with an Emphas. Methodol. Transform (2004)Google Scholar
  19. 19.
    Berre, A., Elvesæter, B., Figay, N., et al.: The athena interoperability framework. In: 3rd Int. Conf. Interoperability Enterp. Softw. Appl. (2007)Google Scholar
  20. 20.
    Ducq, Y., Chen, D., Alix, T.: Principles of servitization and definition of an architecture for model driven service sys-tem engineering. In: 4th Int IFIP Work Conf Einterprise Interoperability (IWEI 2012)Google Scholar
  21. 21.
    Agostinho, C., Bazoun, H., Zacharewicz, G., et al.: Information models and transformation principles applied to servitization of manufacturing and service systems design. In: Proc. 2nd Int. Conf. Model Eng. Softw. Dev. (2014)Google Scholar
  22. 22.
    EsperTech: EsperTech – Esper (2015). (accessed August 26, 2015)
  23. 23.
    Apache Software Foundation: Apache Jena (2015). (accessed August 24, 2015)
  24. 24.
    Red Hat Inc.: jBPM - Open Source Business Process Management (2015). (accessed August 24, 2015)

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Artur Felic
    • 1
    Email author
  • Spiros Alexakis
    • 1
  • Carlos Agostinho
    • 2
  • Catarina Marques-Lucena
    • 2
  • Klaus Fischer
    • 3
  • Michele Sesana
    • 4
  1. 1.CAS Software AGKarlsruheGermany
  2. 2.Centre of Technology and Systems, CTS, UninovaCaparicaPortugal
  3. 3.DFKI GmbHSaarbrückenGermany
  4. 4.TXT e-solutionsMilanItaly

Personalised recommendations