Skip to main content

Model Based Quantification of Tissue Structural Properties Using Optical Coherence Tomography

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2014)

Abstract

Optical Coherence Tomography is an optical imaging technique providing subsurface structural images with a resolution at histological level. It has been widely studied and applied in both research and clinical practice with special interest in cancer diagnosis. One of the major queries today is to represent the images in a standardized way. To this aim the qualitative image recorded on the tissue will be transformed into a quantitative model. The solution provided here is able to diagnose healthy versus cancerous tissue independently from the measurement settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kind, M., Stock, N., Coindre, J.M.: Histology and imaging of soft tissue sarcomas. Eur. J. Radiol. 72, 6–15 (2009)

    Article  Google Scholar 

  2. Rembielak, A., Green, M., Saleem, A.: Pat Price, Diagnostic and therapeutic imaging in oncology. Cancer Biol. Imaging Med. 39(12), 693–697 (2011)

    Google Scholar 

  3. Morris, P., Perkins, A.: Diagnostic imaging, Physics and Medicine 2. Lancet 379, 1525–1533 (2012)

    Article  Google Scholar 

  4. Drexler, W., Fujimoto, J.G.: Optical Coherence Tomography: Technology and Applications. Springer, Berlin (2008)

    Book  Google Scholar 

  5. Brezinski, M.E.: Optical Coherence Tomography, Principles and Applications. Academic Press Elsevier Inc., New York (2006)

    Google Scholar 

  6. Carbajal, E.F., Baranov, S.A., Manne, V.G.R., Young, E.D., Lazar, A.J., Lev, D.C., Pollock, R.E., Larin, K.V.: Revealing retroperitoneal liposarcoma morphology using optical coherence tomography. J. Biomed. Opt. 16(2), 020502 (2011)

    Article  Google Scholar 

  7. Lahat, G., Madewell, J.E., Anaya, D.A., Qiao, W., Tuvin, D., Benjamin, R.S., Lev, D.C., Pollock, R.E.: Computed tomography scan-driven selection of treatment for retroperitoneal liposarcoma histologic subtypes. Cancer 115(5), 1081–1090 (2009)

    Article  Google Scholar 

  8. Lev, D., Baranov, S.A., Carbajal, E.F. Young, E.D., Pollock, R.E., Larin, K.V.: Differentiating retroperitoneal liposarcoma tumors with optical coherence tomography. In: Proceedings SPIE 7890, Advanced Biomedical and Clinical Diagnostic Systems IX, 78900U (2011)

    Google Scholar 

  9. Unal, B., Bilgili, Y.K., Batislam, E., Erdogan, S.: Giant dedifferentiated liposarcoma: CT and MRI findings. Eur. J. Radiol. Extra 5, 47–50 (2004)

    Article  Google Scholar 

  10. Singer, S., Antonescu, C.R., Riedel, E., Brennan, M.F.: Histologic subtype and margin of resection predict pattern of recurrence and survival for retroperitoneal liposarcoma. Ann. Surg. 238(3), 358–370 (2003)

    Google Scholar 

  11. Fletcher, C.D.M., Rydholm, A., Singer, S., Sundaram, M., Coindre, J.M.: Soft tissue tumours: epidemiology, clinical features, histopathological typing and grading. WHO Classification of Soft Tissue Tumors (2006)

    Google Scholar 

  12. Dei Tos, A.P.: Liposarcoma: new entities and evolving concepts. Ann. Diagn. Pathol. 4(4), 252–266 (2000)

    Article  Google Scholar 

  13. Gora, M., Karnowski, K., Szkulmowski, M., Kaluzny, B.J., Huber, R., Kowalczyk, A., Wojtkowski, M.: Ultra-high-speed swept-source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt. Express 17(17), 14880–14894 (2009)

    Article  Google Scholar 

  14. Bajraszewski, T., Wojtkowski, M., Szkulmowski, M., Szkulmowska, A., Huber, R., Kowalczyk, A.: Improved spectral optical coherence tomography using optical frequency comb. Opt. Express 16(6), 4163–4176 (2008)

    Article  Google Scholar 

  15. McLaughlin, R.A., Scolaro, L.: Parametric imaging of cancer with optical coherence tomography. J. Biomed. Opt. 15(4), 046029 (2010)

    Article  Google Scholar 

  16. Lee, P., Gao, W., Zhang, X.: Performance of single-scattering model versus multiple-scattering model in the determination of optical properties of biological tissue with optical coherence tomography. Appl. Opt. 49(18), 3538–3544 (2010)

    Article  Google Scholar 

  17. Faber, D.J., van der Meer, F.J., Aalders, M.C.G.: Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. Opt. Express 12(19), 4353–4365 (2004)

    Article  Google Scholar 

  18. Thrane, L., Yura, H.T., Andersen, P.E.: Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. J. Opt. Soc. Am. A 17(3), 484–490 (2000)

    Article  MathSciNet  Google Scholar 

  19. Yang, Y., Wang, T., Biswal, N.C., Wang, X., Sanders, M., Brewer, M., Zhu, Q.: Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue. J. Biomed. Opt. 16(9), 090504 (2011)

    Article  Google Scholar 

  20. van der Meer, F.J., Faber, D.J., Sassoon, D.M.B., Aalders, M.C., Pasterkamp, G., van Leeuwen, T.G.: Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005)

    Article  Google Scholar 

  21. van Leeuwen, T.G., Faber, D.J., Aalders, M.C.: Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography. IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003)

    Article  Google Scholar 

  22. Scolaro, L., McLaughlin, R.A., Klyen, B.R., Wood, B.A., Robbins, P.D., Saunders, C.M., Jacques, S.L., Sampson, D.D.: Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography. Biomed. Opt. Express 3(2), 366–378 (2012)

    Article  Google Scholar 

  23. Iftimia, N.V., Bouma, B.E., Pitman, M.B., Goldberg, B.D., Bressner, J., Tearney, G.J.: A portable, low coherence interferometry based instrument for fine needle aspiration biopsy guidance. Rev. Sci. Instrum. 76, 064301 (2005)

    Article  Google Scholar 

  24. Goldberg, B.D., Iftimia, N.V., Bressner, J.E., Pitman, M.B., Halpern, E., Bouma, B.E., Tearney, G.J.: Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance. J. Biomed. Opt. 13(1), 014014 (2008)

    Article  Google Scholar 

  25. Wang, S., Sudheendran, N., Liu, C.-H., Manapuram, R.K., Zakharov, V.P., Ingram, D.R., Lazar, A.J., Lev, D.C., Pollock, R.E., Larin, K.V.: Computational analysis of optical coherence tomography images for the detection of soft tissue sarcomas. In: Proceedings of SPIE 8580, 85800 T, 2, Dynamics and Fluctuations in Biomedical Photonics X (2013)

    Google Scholar 

  26. Wang, S., Liu, C.-H., Zakharov, V.P., Lazar, A.J., Pollock, R.E., Larin, K.V.: Three-dimensional computational analysis of optical coherence tomography images for the detection of soft tissue sarcomas. J. Biomed. Opt. 19(2), 021102 (2014)

    Article  Google Scholar 

  27. Zysk, A.M., Boppart, S.A.: Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. J. Biomed. Opt. 11(5), 054015 (2006)

    Article  Google Scholar 

  28. Sullivan, A.C., Hunt, J.P., Oldenburg, A.L.: Fractal analysis for classification of breast carcinoma in Optical Coherence Tomography. J. Biomed. Opt. 16(6), 066010 (2011)

    Article  Google Scholar 

  29. Popescu, D.P., Flueraru, C., Mao, Y., Chang, S., Sowa, M.G.: Signal attenuation and box-counting fractal analysis of optical coherence tomography images of arterial tissue. Biomed. Opt. Express 1(1), 268–277 (2010)

    Article  Google Scholar 

  30. Mujat, M.R., Ferguson, D., Hammer, D.X., Gittins, C., Iftimia, N.: Automated algorithm for breast tissue differentiation in optical coherence tomography. J. Biomed. Opt. 14(3), 034040 (2009)

    Article  Google Scholar 

  31. Gossage, K.W., Tkaczyk, T.T., Rodriguez, J.J., Barton, J.K.: Texture analysis of Optical Coherence Tomography images: feasibility for tissue classification. J. Biomed. Opt. 8(3), 570–575 (2003)

    Article  Google Scholar 

  32. Gossage, K.W., Smith, C.M., Kanter, E.M., Hariri, L.P., Stone, A.L., Rodriguez, J.J., Williams, S.K., Barton, J.K.: Texture analysis of speckle in optical coherence tomography images of tissue phantoms. Phys. Med. Biol. 51, 1563–1575 (2006)

    Article  Google Scholar 

  33. Miettinen, M.M.: Diagnostic Soft Tissue Pathology. Churchill Livingstone (2003)

    Google Scholar 

  34. Miettinen, M.M.: Modern Soft Tissue Pathology, Tumors and Non-neoplastic Conditions. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the very important contribution made by Shang Wang and Narendran Sudheendran. This work was supported by the Hungarian-American Fulbright Commission, the French Ministry of Research and the University of Houston. This work is the continuation of a poster presentation held on November 16, 2012 at the MEGA Research day of the University of Houston, and the Conference Proceedings of BIOSTEC – BIOIMAGING held in Angers, France March 3-6, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecília Lantos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lantos, C., Borji, R., Douady, S., Grigoriadis, K., Larin, K., Franchek, M.A. (2015). Model Based Quantification of Tissue Structural Properties Using Optical Coherence Tomography. In: Plantier, G., Schultz, T., Fred, A., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2014. Communications in Computer and Information Science, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-319-26129-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26129-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26128-7

  • Online ISBN: 978-3-319-26129-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics