Skip to main content

Novel Wireless Systems for Telemedicine and Body Area Networks Applications

  • Conference paper
  • First Online:
  • 580 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 511))

Abstract

The demand for novel wireless system solutions is increasing exponentially in today’s world. Wireless systems are extremely beneficial and applied in a wide spectrum of fields such as: personal communication, medicine, military, firefighting, entertainment, aeronautics, and Radio Frequency Identification (RFID). In this chapter, the design and analysis of two compact antennas aimed for telemedicine and Body Area Networks (BAN) are presented. The first design is based on a MIMO antenna array utilizing µ-negative metamaterial (MNG) structures that lead to low correlation between antennas when placed closely on a user’s body. The antenna array resonates at 5.2 GHz. The second design is a mechanically flexible directional Yagi-Uda antenna resonating at 2.5 GHz for on-body communication. Both designs have the merits of light weight, low profile, mechanical robustness, compactness, and high efficiency. Such properties suggest that the proposed designs would be reasonable candidates for telemedicine and BAN applications that are constrained by limited physical space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fong, B., Ansari, N., Fong, A.C.M.: Prognostics and health management for wireless telemedicine networks. Wireless Commun. IEEE 19(5), 83–89 (2012)

    Article  Google Scholar 

  2. Algaet, M.A., Bin Muhamad Noh, Z.A., Shibghatullah, A.S., Milad, A.A.: Provisioning quality of service of wireless telemedicine for e-health services. In: 2013 IEEE Conference on Information and Communication Technologies (ICT), pp. 199–202, 11-12 April 2013

    Google Scholar 

  3. Khaleel, H.R., Al-Rizzo, H.M., Rucker, D.G., Elwi, T.A.: Wearable Yagi microstrip antenna for telemedicine applications. Radio and Wireless Symposium (RWS) 2010 , pp. 280–283. IEEE, 10-14 January 2010

    Google Scholar 

  4. Haga, N., Saito, K., Takahashi, M., Ito, K.: Characteristics of cavity slot antenna for body-area networks. IEEE Trans. Antennas Propag. 57(4), 837–843 (2009)

    Article  Google Scholar 

  5. Rowe, W.S.T., Waterhouse, R.B.: Reduction of backward radiation for CPW fed aperture stacked patch antennas on small ground planes. IEEE Trans. Antennas Propag. 51(6), 1411–1413 (2003)

    Article  Google Scholar 

  6. Targonski, S.D., Pozar, D.M.: Aperture-coupled microstrip antennas using reflector elements for wireless communications. In: Proceedings of IEEE-APS Conference Antennas and Propagation for Wireless Communications, pp. 163–166, November 1998

    Google Scholar 

  7. Sanz-Izquierdo, B., Batchelor, J.C.: WLAN jacket mounted antenna. In: Antenna Technology: Small and Smart Antennas, Metamaterials, and Applications, pp. 57–60, June 2007

    Google Scholar 

  8. Islam, M.T., Faruque, M.R.I., Misran, N.: Reduction of Specific Absorption Rate (SAR) in the human head with ferrite material and metamaterial. Prog. Electromagnet. Res. C 9, 47–58 (2009)

    Article  Google Scholar 

  9. Raad, H., Abbosh, A., Al-Rizzo, H.H., Rucker, D.G.: Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans. Antennas Propag. 61(2), 524–531 (2013)

    Article  Google Scholar 

  10. Khaleel, H. R., Al-Rizzo, H.M., Rucker, D.G., Al-Naiemy, Y.: Flexible printed monopole antennas for WLAN applications. In: 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 1334–1337, 3-8 July 2011

    Google Scholar 

  11. Chou, H.-T., Cheng, H.-C., Hsu, H.-T., Kuo, L.-R.: Investigation of isolation improvement techniques for MIMO WLAN portable terminal applications. Prog. Electromagnet. Res. PIER 85, 349–366 (2008)

    Article  Google Scholar 

  12. Abouda, A.A., Haggman, S.G.: Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario. Prog. Electromagnet. Res. PIER 65, 27–40 (2006)

    Article  Google Scholar 

  13. Alamouti, S.: A simple transmit diversity technique for wireless communications. IEEE J. Select. Areas Commun. 16(8), 1451–1458 (1998)

    Article  Google Scholar 

  14. Shiu, D.S., Foschini, G.J., Gans, M.J., Kahn, J.M.: Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Trans. Commun. 48, 502–513 (2000)

    Article  Google Scholar 

  15. Shin, H., Lee, J.H.: Capacity of multiple-antenna fading channels: spatial fading correlation, double scattering, and keyhole. IEEE Trans. Inf. Theory 49(10), 2636–2647 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wallace, J.W., Jensen, M.A.: Mutual coupling in mimo wireless systems: a rigorous network theory analysis. IEEE Trans. Wireless Commun. 3(4), 1317–1325 (2004)

    Article  Google Scholar 

  17. Kyritsi, P., Cox, D., Valenzuela, R., Wolniansky, P.: Correlation analysis based on mimo channel measurements in an indoor environment. IEEE J. Sel. Areas Commun. 21(5), 713–720 (2003)

    Article  Google Scholar 

  18. Caban, S., Rupp, M.: Impact of transmit antenna spacing on 2x1 alamouti radio transmission. Electron. Lett. 43(4), 198–199 (2007)

    Article  Google Scholar 

  19. Ikeuchi, R., Hirata, A.: Dipole Antenna Above EBG Substrate for Local SAR Reduction. Antennas and Wireless Propagation Letters, IEEE 10, 904–906 (2011)

    Article  Google Scholar 

  20. Caloz, C., Okabe, H., Iwai, T., Itoh, T.: A simple and accurate model for microstrip structures with slotted ground plane. IEEE Microwave Wireless Comput Lett. 14(4), 133–135 (2004)

    Article  Google Scholar 

  21. Bait-Suwailam, M.M., Boybay, M.S., Ramahi, O.M.: Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for mimo applications. IEEE Trans. Antennas Propag. 58(9), 2894–2902 (2010)

    Article  Google Scholar 

  22. Pendry, J., Holden, A., Robbins, D., Stewart, W.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47(11), 2075–2084 (1999)

    Article  Google Scholar 

  23. CST microwave studio (2010, April). http://www.cst.com/Content/Products/MWS/Overview.aspx

  24. Blanch, S., Romeu, J., Corbella, I.: Exact representation of antenna system diversity performance from input parameter description. Electron. Lett. 39, 705–707 (2003)

    Article  Google Scholar 

  25. Khaleel, H.R., Al-Rizzo, H.M., Rucker, D.G.: Compact polyimide-based antennas for flexible displays. IEEE J. Disp. Technol. 8(2), 91–97 (2012)

    Article  Google Scholar 

  26. Khaleel, H.R., Al-Rizzo, H.M., Rucker, D.G., Mohan, S.: A Compact Polyimide-Based UWB Antenna for Flexible Electronics. Antennas and Wireless Propagation Letters IEEE 11, 564–567 (2012)

    Article  Google Scholar 

  27. Khaleel, H.R., Al-Rizzo, H.M., Rucker, D.G.: Compact polyimide-based antennas for flexible displays. IEEE J. Disp. Technol. 8(2), 91–97 (2012)

    Article  Google Scholar 

  28. Abbosh, A.I., Babiceanu, R.F., Al-Rizzo, H., Abushamleh, S. Khaleel, H.R.: Flexible Yagi-Uda antenna for wearable electronic devices. In: IEEE International Symposium on Antennas and Propagation Society (2013)

    Google Scholar 

  29. Ding, Y., Jiao, Y., Fei, P., Li, B., Zhang, Q.: Design of a multiband quasi-Yagi-type antenna with CPW-to-CPS transition. IEEE Antennas Wireless Propag. Lett. 10, 1120–1123 (2011)

    Article  Google Scholar 

  30. Hsu, S.S., Wei, K.C., Hsu, C.Y., Ru-Chuang, H.: A 60-GHz millimeter-wave CPW-fed Yagi antenna fabricated by using 0.18-µm CMOS technology. IEEE Electron Device Lett. 29(6), 625–627 (2008)

    Article  Google Scholar 

  31. Kan, H.K., Abbosh, A.M., Waterhouse, R.B., Bialkowski, M.E.: Compact broadband coplanar waveguide-fed curved quasi-Yagi antenna. IET Microwave Antennas Propag. 1(3), 572–574 (2007)

    Article  Google Scholar 

  32. Ta, S.X., Choo, H., Park, I.: Wideband double-dipole Yagi-Uda antenna fed by a microstrip-slot coplanar stripline transition. Prog. in Electromagnet. Res. B 44, 71–87 (2012)

    Article  Google Scholar 

  33. Cai, R.N., Lin, S., Huang, G.L. et al.: Research on a novel Yagi-Uda antenna fed by balanced microstrip line. In: Proceedings China-Japan Joint Microwave Conference (CJMW) 2011, pp. 1–4, April 2011

    Google Scholar 

  34. Huang, H.C., Lu, J.C., Hsu, P.: A compact printed Yagi type antenna for GPS application. In: Proceedings Asia-Pacific Microwave Conference (APMC), pp. 1698–1701 Melbourne, December 2011

    Google Scholar 

  35. DeJean, G.R., Tentzeris, M.M.: A new high-gain microstrip yagi array antenna with a high front-to-back (F/B) Ratio for WLAN and millimeter-wave applications. IEEE Trans. Antennas Propag. 55(2), 298–304 (2007)

    Article  Google Scholar 

  36. Agarwal, K., Guo, Y.-X., Salam, B. Albert, L.C.W.: Latex based near-endfire wearable antenna backed by AMC surface. In: IEEE Microwave Workship Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), pp. 1–3, December 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haider Khaleel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Khaleel, H., Singh, C., White, C., Al-Rizzo, H., Mohan, S. (2015). Novel Wireless Systems for Telemedicine and Body Area Networks Applications. In: Plantier, G., Schultz, T., Fred, A., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2014. Communications in Computer and Information Science, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-319-26129-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26129-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26128-7

  • Online ISBN: 978-3-319-26129-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics