Skip to main content

Exploring Expiratory Flow Dynamics to Understand Chronic Obstructive Pulmonary Disease

  • Conference paper
  • First Online:
  • 572 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 511))

Abstract

Chronic obstructive pulmonary disease (COPD) is one of the most common respiratory diseases and a leading cause of morbidity and mortality. It is characterized by irreversible airflow limitations. We aimed to explore whether the dynamics of expiration could serve as a descriptor of airflow limitations. Additionally, we explored the relationship between dynamic components and the presence of COPD. A data-based model was developed using data from 474 subjects. Significant difference (p < 0.0001) was found comparing a group of diseased patients with healthy for each dynamic component (namely the two poles, the steady state gain (SSG) and the time constant). Moreover difference was observed for each severity stage of disease. When ranking all components, SSG and pole1 are highlighted as the best COPD descriptors. We concluded that more detailed analysis of the forced expiration can be used to expand the understanding of COPD. Furthermore, the obtained parameters may improve current COPD assessment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rabe, K.F., Hurd, S., Anzueto, A., Barnes, P.J., Buist, S.A., Calverley, P., Fukuchi, Y., Jenkins, C., Rodriguez-Roisin, R., van Weel, C., Zielinski, J.: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 176(6), 532–555 (2007)

    Article  Google Scholar 

  2. Rennard, S.I., Vestbo, J.: Natural histories of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 5(9), 878–883 (2008)

    Article  Google Scholar 

  3. Decramer, M., Janssens, W., Miravitlles, M.: Chronic obstructive pulmonary disease. Lancet 379(9823), 1341–1351 (2012)

    Article  Google Scholar 

  4. Mathers, C.D., Loncar, D.: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3(11), e442 (2006)

    Article  Google Scholar 

  5. Murray, C.J., Lopez, A.D.: Alternative projections of mortality and disability by cause 1990-2020: global burden of disease study. Lancet 349(9064), 1498–1504 (1997)

    Article  Google Scholar 

  6. WHO, World Health Statistic, EN_WHS08_Full.pdf. 2012 (2008). http://www.who.int/whosis/whostat/

  7. Mannino, D.M., Buist, A.S.: Global burden of COPD: risk factors, prevalence, and future trends. Lancet 370(9589), 765–773 (2007)

    Article  Google Scholar 

  8. Agusti, A., Calverley, P.M., Celli, B., Coxson, H.O., Edwards, L.D., Lomas, D.A., MacNee, W., Miller, B.E., Rennard, S., Silverman, E.K., Tal-Singer, R., Wouters, E., Yates, J.C., Vestbo, J.: Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respir. Res. 11, 122 (2010)

    Google Scholar 

  9. Miravitlles, M., Soler-Cataluna, J.J., Calle, M., Soriano, J.B.: Treatment of COPD by clinical phenotypes: putting old evidence into clinical practice. Eur. Respir. J. 41(6), 1252–1256 (2013)

    Article  Google Scholar 

  10. Garcia-Rio, F., Soriano, J.B., Miravitlles, M., Munoz, L., Duran-Tauleria, E., Sanchez, G., Sobradillo, V., Ancochea, J.: Overdiagnosing subjects with COPD using the 0.7 fixed ratio: correlation with a poor health-related quality of life. Chest 139(5), 1072–1080 (2011)

    Article  Google Scholar 

  11. Bodduluri, S., Newell, Jr., J.D., Hoffman, E.A., Reinhardt, J.M.: Registration-based lung mechanical analysis of chronic obstructive pulmonary disease (COPD) using a supervised machine learning framework. Acad. Radiol. 20(5), 527–536 (2013)

    Google Scholar 

  12. Sorensen, L., Nielsen, M., Lo, P., Ashraf, H., Pedersen, J.H., de Bruijne, M.: Texture-based analysis of COPD: a data-driven approach. IEEE Trans. Med. Imaging 31(1), 70–78 (2012)

    Article  Google Scholar 

  13. Fens, N., Zwinderman, A.H., van der Schee, M.P., de Nijs, S.B., Dijkers, E., Roldaan, A.C., Cheung, D., Bel, E.H., Sterk, P.J.: Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am. J. Respir. Crit. Care Med. 180(11), 1076–1082 (2009)

    Article  Google Scholar 

  14. Phillips, C.O., Syed, Y., Parthalain, N.M., Zwiggelaar, R., Claypole, T.C., Lewis, K.E.: Machine learning methods on exhaled volatile organic compounds for distinguishing COPD patients from healthy controls. J. Breath. Res. 6(3), 036003 (2012)

    Article  Google Scholar 

  15. Amaral, J.L., Lopes, A.J., Jansen, J.M., Faria, A.C., Melo, P.L.: Machine learning algorithms and forced oscillation measurements applied to the automatic identification of chronic obstructive pulmonary disease. Comput. Methods Programs Biomed. 105(3), 183–193 (2012)

    Article  Google Scholar 

  16. Dellaca, R.L., Santus, P., Aliverti, A., Stevenson, N., Centanni, S., Macklem, P.T., Pedotti, A., Calverley, P.M.: Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur. Respir. J. 23(2), 232–240 (2004)

    Google Scholar 

  17. Lambrechts, D., Buysschaert, I., Zanen, P., Coolen, J., Lays, N., Cuppens, H., Groen, H.J., Dewever, W., van Klaveren, R.J., Verschakelen, J., Wijmenga, C., Postma, D.S., Decramer, M., Janssens, W.: The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema. Am. J. Respir. Crit. Care Med. 181(5), 486–493 (2010)

    Article  Google Scholar 

  18. Topalovic, M., Exadaktylos, V., Peeters, A., Coolen, J., Dewever, W., Hemeryck, M., Slagmolen, P., Janssens, K., Berckmans, D., Decramer, M., Janssens, W.: Computer quantification of airway collapse on forced expiration to predict the presence of emphysema. Respir. Res. 14, 131 (2013)

    Article  Google Scholar 

  19. Miller, M.R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Crapo, R., Enright, P., van der Grinten, C.P., Gustafsson, P., Jensen, R., Johnson, D.C., MacIntyre, N., McKay, R., Navajas, D., Pedersen, O.F., Pellegrino, R., Viegi, G., Wanger, J.: Standardisation of spirometry. Eur. Respir. J. 26(2), 319–338 (2005)

    Article  Google Scholar 

  20. Quanjer, P.H., Tammeling, G.J., Cotes, J.E., Pedersen, O.F., Peslin, R., Yernault, J.C.: Lung volumes and forced ventilatory flows. work group on standardization of respiratory function tests. european community for coal and steel. official position of the european respiratory society. Rev. Mal. Respir. 11(Suppl 3), 5–40 (1994)

    Google Scholar 

  21. Taylor, C.J., Pedregal, D.J., Young, P.C., Tych, W.: Environmental time series analysis and forecasting with the Captain toolbox. Environ. Model Softw. 22(6), 797–814 (2007)

    Article  Google Scholar 

  22. Ljung, L.: System Identification: Theory for the User. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  23. Young, P.C.: Recursive Estimation and Time-Series Analysis: An Introduction. Springer, Heidelberg (1984)

    Book  MATH  Google Scholar 

  24. Young, P.: Parameter-estimation for continuous-time models - a survey. Automatica 17(1), 23–39 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yang, Y., Pedersen, J.P.: A comparative study on feature selection in text categorization. In: Proceedings of the International Conference on Machine Learning (ICML 1997), pp. 412–420 (1997)

    Google Scholar 

  26. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Article  Google Scholar 

  27. Healy, F., Wilson, A.F., Fairshter, R.D.: Physiologic correlates of airway collapse in chronic airflow obstruction. Chest 85(4), 476–481 (1984)

    Article  Google Scholar 

  28. Koulouris, N.G., Hardavella, G.: Physiological techniques for detecting expiratory flow limitation during tidal breathing. Eur. Respir. Rev. 20(121), 147–155 (2011)

    Article  Google Scholar 

  29. Papandrinopoulou, D., Tzouda, V., Tsoukalas, G.: Lung compliance and chronic obstructive pulmonary disease. Pulm. Med. 2012, 542769 (2012)

    Article  Google Scholar 

  30. Bass, H.: The flow volume loop: normal standards and abnormalities in chronic obstructive pulmonary disease. Chest 63(2), 171–176 (1973)

    Article  Google Scholar 

  31. Jayamanne, D.S., Epstein, H., Goldring, R.M.: Flow-volume curve contour in COPD: correlation with pulmonary mechanics. Chest 77(6), 749–757 (1980)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Geert Celis and co-workers (Respiratory Division, University Hospital Leuven, Belgium) for helping in collection of patient data and their technical support in extracting data from the Masterlab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Topalovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Topalovic, M. et al. (2015). Exploring Expiratory Flow Dynamics to Understand Chronic Obstructive Pulmonary Disease. In: Plantier, G., Schultz, T., Fred, A., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2014. Communications in Computer and Information Science, vol 511. Springer, Cham. https://doi.org/10.1007/978-3-319-26129-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26129-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26128-7

  • Online ISBN: 978-3-319-26129-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics