Skip to main content

Supervised Approach to Finding Most Frequent Senses in Russian

  • 913 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 542)

Abstract

The paper describes a supervised approach for the detection of the most frequent sense on the basis of RuThes thesaurus, which is a large linguistic ontology for Russian. Due to the large number of monosemous multiword expressions and the set of RuThes relations it is possible to calculate several context features for ambiguous words and to study their contribution in a supervised model for detecting frequent senses.

Keywords

  • Lexical senses
  • Automatic sense disambiguation
  • The most frequent sense

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-26123-2_33
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-26123-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

References

  1. Agirre, E., Màrquez, L., Wicentowski, R. (eds.): Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval). Association for Computational Linguistics, Prague (2007)

    Google Scholar 

  2. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. (CSUR), 41(2), 10, 1–69 (2009)

    Google Scholar 

  3. Landes, S., Leacock, C., Tengi, R.: Building semantic concordances. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database. The MIT Press, Cambridge (Mass) (1998)

    Google Scholar 

  4. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  5. Petrolito, T., Bond, F.: A survey of wordnet annotated corpora. In: Proceedings of Global WordNet Conference, GWC-2014, pp. 236–245 (2014)

    Google Scholar 

  6. Mitra, S., Mitra, R., Riedl, M., Biemann, C., Mukherjee, A., Goyal, P.: That’s sick dude!: automatic identification of word sense change across different timescales. In: Proceedings of ACL-2014 (2014)

    Google Scholar 

  7. Mohammad, S., Hirst, G.: Determining word sense dominance using a thesaurus. In: Proceedings of EACL-2006, pp. 121–128 (2006)

    Google Scholar 

  8. McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Finding predominant word senses in untagged text. In: Proceedings of ACL-2004 (2004)

    Google Scholar 

  9. McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Unsupervised acquisition of predominant word senses. Comput. Linguist. 33(4), 553–590 (2007)

    CrossRef  Google Scholar 

  10. Koeling, R., McCarthy, D., Carroll, J.: Domain-specific sense distributions and predominant sense acquisition. In: Proceedings EMNLP-2005, Vancouver, pp. 419–426 (2005)

    Google Scholar 

  11. Loukachevitch, N., Dobrov, B.: RuThes linguistic ontology vs. Russian wordnets. In: Proceedings of Global WordNet Conference GWC-2014 (2014)

    Google Scholar 

  12. Snyder, B., Palmer, M.: The english all-words task. In: Mihalcea, R., Chklowski, T. (eds.) Proceedings of SENSEVAL-3: Third International Workshop on Evaluating Word Sense Disambiguating Systems, pp. 41–43 (2004)

    Google Scholar 

  13. Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of the 17th International Conference on Computational linguistics COLING-1998, pp. 768–774 (1998)

    Google Scholar 

  14. Lau, J.H., Cook, P., McCarthy, D., Gella, S., Baldwin, T.: Learning word sense distributions, detecting unattested senses and identifying novel senses using topic models. In: Proceedings of ACL-2014, pp. 259–270 (2014)

    Google Scholar 

  15. Agirre, E., Lacalle, O.L.: Publicly available topic signatures for all wordnet nominal senses. In: Proceedings of LREC-2004 (2004)

    Google Scholar 

  16. Leacock, C., Miller, G., Chodorow, M.: Using corpus statistics and wordnet relations for sense identification. Comput. Linguist. 24(1), 147–165 (1998)

    Google Scholar 

  17. Mihalcea, R.: Bootstrapping large sense tagged corpora. In: Proceedings of LREC-2002 (2002)

    Google Scholar 

  18. Azarowa, I.: RussNet as a computer Lexicon for Russian. In: Proceedings of the Intelligent Information systems IIS-2008, pp. 341–350 (2008)

    Google Scholar 

  19. Balkova, V., Suhonogov, A., Yablonsky, S.: Some issues in the construction of a Russian wordnet grid. In: Proceedings of the Forth International WordNet Conference, Szeged, pp. 44–55 (2008)

    Google Scholar 

  20. Braslavski, P., Ustalov, D., Mukhin, M.: A spinning wheel for YARN: user interface for a crowdsourced thesaurus. In: Proceedings of EACL-2014, Sweden (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Loukachevitch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Loukachevitch, N., Chetviorkin, I. (2015). Supervised Approach to Finding Most Frequent Senses in Russian. In: Khachay, M., Konstantinova, N., Panchenko, A., Ignatov, D., Labunets, V. (eds) Analysis of Images, Social Networks and Texts. AIST 2015. Communications in Computer and Information Science, vol 542. Springer, Cham. https://doi.org/10.1007/978-3-319-26123-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26123-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26122-5

  • Online ISBN: 978-3-319-26123-2

  • eBook Packages: Computer ScienceComputer Science (R0)