Advertisement

Shape Matching Based on Skeletonization and Alignment of Primitive Chains

  • Olesia KushnirEmail author
  • Oleg Seredin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 542)

Abstract

We introduce a new shape matching approach based on skeletonization and alignment of primitive chains. At the first stage the skeleton of a binary image is traversed counterclockwise in order to encode it by chain of primitives. A primitive describes topological properties of the correlated edge and consists of a pair of numbers: the length of some edge and the angle between this and the next edges. We offer to expand a primitive by the information about the radial function of the skeleton rib. To get the compact width description we interpolate radial function by Legendre polynomials and find the vector of Legendre coefficients. Thus the resulting shape representation by the chain of primitives includes not only topological properties but also the contour ones. Then we suggest the dynamic programming procedure of the alignment of two primitive chains in order to match correspondent shapes. Based on the optimal alignment we propose the pair-wise dissimilarity function which is evaluated on artificial image dataset and the Flavia leaf dataset.

Keywords

Binary image Shape matching Skeleton Chain of primitives Skeleton radial function Legendre polynomials Pair-wise alignment 

References

  1. 1.
    Attali, D., Sanniti di Baja, G., Thiel, E.: Skeleton simplification through non significant branch removal. Image Process. Commun. 3(3–4), 63–72 (1997)Google Scholar
  2. 2.
    Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1282–1292 (2008)CrossRefGoogle Scholar
  3. 3.
    Balfer, J., Schöler, F., Steinhage V.: Semantic Skeletonization for Structural Plant Analysis. Submitted to International Conference on Functional-Structural Plant Models (2013)Google Scholar
  4. 4.
    Beghin, T., Cope, J.S., Remagnino, P., Barman, S.: Shape and texture based plant leaf classification. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part II. LNCS, vol. 6475, pp. 345–353. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  5. 5.
    Blum, H.: A transformation for extracting new descriptors of shape. Models Percept. Speech Vis. Form 19(5), 362–380 (1967)Google Scholar
  6. 6.
    Bystrov, M.Y.: Structural approach application for recognition of binary image skeleton. Proc. Petrozavodsk State Univ. 2(115), 76–80 (2011). (in Russian)Google Scholar
  7. 7.
    Demirci, M.F., Shokoufandeh, A., Keselman, Y., Bretzner, L., Dickinson, S.: Object recognition as many-to-many feature matching. Int. J. Comput. Vision 69(2), 203–222 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Du, J.X., Huang, D.S., Wang, X.F., Gu, X.: Computer-aided plant species identification (CAPSI) based on leaf shape matching technique. Trans. Inst. Measur. Control 28(3), 275–285 (2006)CrossRefGoogle Scholar
  9. 9.
    ImageCLEF, Plant Identification (2012). http://imageclef.org/2012/plant
  10. 10.
    Intelligent Computing Laboratory, Chinese Academy of Sciences Homepage. http://www.intelengine.cn/English/dataset
  11. 11.
    Jänichen, S., Perner, P.: Aligning concave and convex shapes. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 243–251. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  12. 12.
    Kadir, A., Nugroho, L.E., Susanto, A., Santosa, P.I.: A comparative experiment of several shape methods in recognizing plants (2011). arXiv preprint arXiv:1110.1509
  13. 13.
    Klein, P., Tirthapura, S., Sharvit, D., Kimia, B.: A tree-edit-distance algorithm for comparing simple, closed shapes. In: Proceedings of the eleventh annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, pp. 696–704 (2000)Google Scholar
  14. 14.
    Kushnir, O., Seredin, O.: Parametric description of skeleton radial function by legendre polynomials for binary images comparison. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 520–530. Springer, Heidelberg (2014) Google Scholar
  15. 15.
    Lam, L., Lee, S.-W., Suen, C.Y.: Thinning methodologies - a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)CrossRefGoogle Scholar
  16. 16.
    LEAF - Tree Leaf Database, Inst. of Information Theory and Automation ASCR, Prague, Czech Republic. http://zoi.utia.cas.cz/tree_leaves
  17. 17.
    Lee, D.: Medial axis transformation of a planar shape. IEEE Trans. Pat. Anal. Mach. Int. PAMI 4(4), 363–369 (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Mallah, C., Cope, J., Orwell, J.: Plant leaf classification using probabilistic integration of shape, texture and margin features. Computer Graphics and Imaging/798: Signal Processing, Pattern Recognition and Applications (CGIM2013), Acta Press (2013). doi: 10.2316/P.2013.798-098
  19. 19.
    Maragos, P.: Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 701–716 (1989)CrossRefzbMATHGoogle Scholar
  20. 20.
    Mestetskiy, L., Semenov, A.: Binary image skeleton - continuous approach. VISAPP 1, 251–258 (2008)Google Scholar
  21. 21.
    Mottl, V.V., Blinov, A.B., Kopylov, A.V., Kostin, A.A.: Optimization techniques on pixel neighborhood graphs for image processing. In: Jolion, J.-M., Kropatsch, W.G. (eds.) Graph-Based Representations in Pattern Recognition. Computing Supplement, vol. 12, pp. 135–145. Springer, Wien (1998) CrossRefGoogle Scholar
  22. 22.
    Mottl, V., Seredin, O., Dvoenko, S., Kulikowski, C., Muchnik, I.: Featureless pattern recognition in an imaginary Hilbert space. In: Proceedings of 16th International Conference on Pattern Recognition, vol. 2, pp. 88–912 (2002)Google Scholar
  23. 23.
    Mottl, V., Krasotkina, O., Seredin, O., Muchnik, I.: Kernel fusion and feature selection in machine learning. In: Proceedings of the Eighth IASTED International Conference on Intelligent Systems and Control, Cambridge, USA, pp. 477–482 (2005)Google Scholar
  24. 24.
    Neuhaus, M., Bunke, H.: Edit distance-based kernel functions for structural pattern classification. Pattern Recogn. 39(10), 1852–1863 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Ogniewicz, R., Kubler, O.: Hierarchic voronoi skeletons. Pattern Recogn. 28(3), 343–359 (1995)CrossRefGoogle Scholar
  26. 26.
    Ogniewicz, R.: Automatic medial axis pruning by mapping characteristics of boundaries evolving under the euclidean geometric heat flow onto Voronoi skeletons. Harvard Robotics Laboratory Technical report, pp. 95–114 (1995)Google Scholar
  27. 27.
    Reier, I.A.: Plane figure recognition based on contour homeomorphism. Pattern Recogn. Image Anal. 11(1), 242–245 (2001)Google Scholar
  28. 28.
    Sanniti di Baja, G., Thiel, E.: Computing and comparing distance-driven skeletons. In: Aspects of Visual Form Processing, pp. 465–486 (1994)Google Scholar
  29. 29.
    Sebastian, T.B., Kimia, B.: Curves vs. skeletons in object recognition. Sig. Process. 85(2), 247–263 (2005)CrossRefzbMATHGoogle Scholar
  30. 30.
    Sederberg, T.W., Greenwood, E.: A physically based approach to 2-D shape blending. Comput. Graph. 26(2), 25–34 (1992)CrossRefGoogle Scholar
  31. 31.
    Serra, J.: Image Analysis and Mathematical Morphology. Acad. Press, London (1982)zbMATHGoogle Scholar
  32. 32.
    Shen, W., Bai, X., Yang, X., Latecki, L.J.: Skeleton pruning as trade-off between skeleton simplicity and reconstruction error. Sci. China Inf. Sci. 56(4), 1–14 (2013)CrossRefGoogle Scholar
  33. 33.
    Shen, W., Wang, X., Yao, C., Bai, X.: Shape recognition by combining contour and skeleton into a mid-level representation. In: Li, S., Liu, C., Wang, Y. (eds.) CCPR 2014, Part I. CCIS, vol. 483, pp. 391–400. Springer, Heidelberg (2014) Google Scholar
  34. 34.
    Söderkvist, O.: Computer Vision Classification of Leaves from Swedish Trees. Diss, Linköping (2001)Google Scholar
  35. 35.
    Vizilter, Y.V., Sidyakin, S.V., Rubis, A.Y., Gorbatsevich, V.S.: Morphological shape comparison based on skeleton representations. Pattern Recogn. Image Anal. 22(3), 412–418 (2012)CrossRefGoogle Scholar
  36. 36.
    Wang, B., Brown, D., Gao, Y., La Salle, J.: MARCH: Multiscale-arch-height description for mobile retrieval of leaf images. Information Sciences (2014). http://dx.doi.org/10.1016/j.ins.2014.07.028
  37. 37.
    Wang, C., Gui, C.-P., Liu, H.-K., Zhang, D., Mosig, A.: An image skeletonization based tool for pollen tube morphology analysis and phenotyping. J. Integr. Plant Biol. 55(2), 131–141 (2013)CrossRefGoogle Scholar
  38. 38.
    Wang, Z., Chi, Z., Feng, D.: Shape based leaf image retrieval. Vis. Image Sig. Process. IEE Proc. 150(1), 34–43 (2003)CrossRefGoogle Scholar
  39. 39.
    Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.-X., Chang, Y.-F., Xiang, Q.-L.: A leaf recognition algorithm for plant classification using probabilistic neural network. In: 2007 IEEE International Symposium on Signal Processing and Information Technology, pp. 11–16 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Tula State UniversityTulaRussia

Personalised recommendations