Suspension Electrodes for Flow-Assisted Electrochemical Systems

  • Kelsey B. Hatzell
  • Yury GogotsiEmail author
Part of the Nanostructure Science and Technology book series (NST)


This chapter focuses on describing a new family of flowable electrochemical systems based on suspension electrodes to address key critical infrastructure needs: grid energy storage and water desalination. The research described herein combines classical aspects of electrochemistry, colloidal science, material science, and rheology to explain and characterize ion and charge percolation processes in suspension electrodes. Comprised of an active material suspended in electrolytic medium, their use enables, for the first time, scalability of electrical energy storage devices (supercapacitors and batteries). Moreover, it expands the principle of supercapacitors beyond small-scale energy storage to new and emerging applications such as deionization of water and energy generation.

This chapter provides an overview of the inventory of solid materials and soluble ionic species that can be used in capacitive suspension electrodes. We demonstrate the use of both carbon-based and other inorganic (manganese oxide) materials in a suspension electrode and describe how compositional loading and material properties (conductivity, porosity, texture) affect electrochemical and rheological properties in a suspension electrode. With an ultimate goal of achieving high energy density, we explore opportunities for pseudocapacitive suspension electrodes via the addition of soluble organic molecules and metal ions for additional charge storage (faradic processes). This chapter discusses the role of carbon surface heteroatoms on the combined rheological, electrochemical, and deionizing properties of capacitive suspension electrodes for water desalination. Finally, the chapter concludes with a description of test methods and procedures used in acquiring key properties such as capacitance, conductivity, and rheological characteristics.


Activate Carbon Active Material Film Electrode Charge Storage Battery System Store Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



K.B. Hatzell acknowledges support from the NSF Graduate Research Fellowship (Grant # 1002809).


  1. 1.
    Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRefGoogle Scholar
  2. 2.
    Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for a green grid. Chem Rev 111:3577CrossRefGoogle Scholar
  3. 3.
    Liu J (2013) Addressing the grand challenges in energy storage. Adv Funct Mater 23:924–928CrossRefGoogle Scholar
  4. 4.
    Darling RM, Gallagher KG, Kowalski JA, Ha S, Brushett FR (2014) Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ Sci 7:3459–3477CrossRefGoogle Scholar
  5. 5.
    Hostick D, Belzer D, Hadley S, Markel T, Marnay C, Kintner-Meyer M (2012) Renewable electricity futures study. Volume 3: End-use electricity demand (report). National Renewable Energy Laboratory (NREL), Golden, COGoogle Scholar
  6. 6.
    Gyuk I, Johnson M, Vetrano J, Lynn K, Parks W, Handa R, Kannberg L, Hearne S, Waldrip K, Braccio R (2013) Grid energy storage (Technical report). Department of Energy (DOE), Washington, DCGoogle Scholar
  7. 7.
    Potential Reliability Impacts of Emerging Flexible Resources (Technical Report) (2010) North American Electric Reliability Corporation (NERC), Princeton, NJGoogle Scholar
  8. 8.
    Hittinger E, Whitacre J, Apt J (2012) What properties of grid energy storage are most valuable? J Power Sources 206:436–449CrossRefGoogle Scholar
  9. 9.
    Whitacre J, Wiley T, Shanbhag S, Wenzhuo Y, Mohamed A, Chun S, Weber E, Blackwood D, Lynch-Bell E, Gulakowski J (2012) An aqueous electrolyte, sodium Ion functional, large format energy storage device for stationary applications. J Power Sources 213:255–264CrossRefGoogle Scholar
  10. 10.
    Barnhart CJ, Benson SM (2013) On the importance of reducing the energetic and material demands of electrical energy storage. Energy Environ Sci 6:1083–1092CrossRefGoogle Scholar
  11. 11.
    Whitacre J, Tevar A, Sharma S (2010) Na 4 Mn9o18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochem Commun 12:463–466CrossRefGoogle Scholar
  12. 12.
    Whitacre J, Shanbhag S, Mohamed A, Polonsky A, Carlisle K, Gulakowski J, Wu W, Smith C, Cooney L, Blackwood D (2014) A polyionic, large‐format energy storage device using an aqueous electrolyte and thick‐format composite Nati2(Po4)3/activated carbon negative electrodes. Energy Technol 3:20–31CrossRefGoogle Scholar
  13. 13.
    Skyllas-Kazacos M, Chakrabarti M, Hajimolana S, Mjalli F, Saleem M (2011) Progress in flow battery research and development. J Electrochem Soc 158:R55–R79CrossRefGoogle Scholar
  14. 14.
    Skyllas-Kazacos M, Rychcik M, Robins RG, Fane A, Green M (1986) New all-vanadium redox flow cell. J Electrochem Soc 133:1057–1058CrossRefGoogle Scholar
  15. 15.
    Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164CrossRefGoogle Scholar
  16. 16.
    Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ (2014) A metal-free organic–inorganic aqueous flow battery. Nature 505:195–198CrossRefGoogle Scholar
  17. 17.
    Yang B, Hoober-Burkhardt L, Wang F, Prakash GS, Narayanan S (2014) An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. J Electrochem Soc 161:A1371–A1380CrossRefGoogle Scholar
  18. 18.
    Brushett FR, Vaughey JT, Jansen AN (2012) An all‐organic non‐aqueous lithium‐ion redox flow battery. Adv Energy Mater 2:1390–1396CrossRefGoogle Scholar
  19. 19.
    Hernández-Burgos K, Burkhardt SE, Rodríguez-Calero GG, Hennig RG, Abruña HD (2014) Theoretical studies of carbonyl-based organic molecules for energy storage applications: the heteroatom and substituent effect. J Phys Chem C 118:6046–6051CrossRefGoogle Scholar
  20. 20.
    Burkhardt SE, Lowe MA, Conte S, Zhou W, Qian H, Rodríguez-Calero GG, Gao J, Hennig RG, Abruña HD (2012) Tailored redox functionality of small organics for pseudocapacitive electrodes. Energy Environ Sci 5:7176–7187CrossRefGoogle Scholar
  21. 21.
    Glicksman R, Morehouse C (1959) Investigation of the electrochemical characteristics of organic compounds Iv. Quinone compounds. J Electrochem Soc 106:741–745CrossRefGoogle Scholar
  22. 22.
    Hernandez-Burgos K, Rodríguez-Calero GG, Zhou W, Burkhardt SE, Abruña HCD (2013) Increasing the gravimetric energy density of organic based secondary battery cathodes using small radius cations (Li+ and Mg2+). J Am Chem Soc 135:14532–14535CrossRefGoogle Scholar
  23. 23.
    Nagarjuna G, Hui J, Cheng KJ, Lichtenstein T, Shen M, Moore JS, Rodríguez-López J (2014) Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents. J Am Chem Soc 136:16309–16316CrossRefGoogle Scholar
  24. 24.
    Duduta M, Ho B, Wood VC, Limthongkul P, Brunini VE, Carter WC, Chiang Y-M (2011) Semi-solid lithium rechargeable flow battery. Adv Energy Mater 1:511–516CrossRefGoogle Scholar
  25. 25.
    Presser V, Dennison CR, Campos J, Knehr KW, Kumbur EC, Gogotsi Y (2012) The electrochemical flow capacitor: a new concept for rapid energy storage and recovery. Adv Energy Mater 2:895–902CrossRefGoogle Scholar
  26. 26.
    Jeon S-I, Park H-R, Yeo J-G, Yang S, Cho CH, Han MH, Kim D-K (2013) Desalination via a new membrane capacitive deionization process utilizing flow electrodes. Energy Environ Sci 6:1471–1475CrossRefGoogle Scholar
  27. 27.
    Hatzell M, Hatzell KB, Logan BE (2014) Using flow electrodes in multiple reactors in series for continuous energy generation from capacitive mixing. Environ Sci Technol Lett 12:474–478CrossRefGoogle Scholar
  28. 28.
    Campos J, Beidaghi M, Hatzell KB, Dennison C, Presser V, Kumbur EC, Gogotsi Y (2013) Investigation of carbon materials for use as a flowable electrode in electrochemical flow capacitors. Electrochim Acta 98:123–130CrossRefGoogle Scholar
  29. 29.
    Hatzell KB, Fan L, Beidaghi M, Boota M, Pomerantseva E, Kumbur EC, Gogotsi Y (2014) Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. ACS Appl Mater Interfaces 6:8886–8893CrossRefGoogle Scholar
  30. 30.
    Hamelet S, Tzedakis T, Leriche J-B, Sailler S, Larcher D, Taberna P-L, Simon P, Tarascon J-M (2012) Non-aqueous Li-based redox flow batteries. J Electrochem Soc 159:A1360–A1367CrossRefGoogle Scholar
  31. 31.
    Ventosa E, Buchholz D, Klink S, Flox C, Chagas LG, Vaalma C, Schuhmann W, Passerini S, Morante JR (2015) Non-aqueous semi-solid flow battery based on Na-Ion chemistry. P2-Type Naxni0.22co0.11 Mn0.66 O2–Nati2 (Po4)3. Chem Commun. doi: 10.1039/C4CC09597A Google Scholar
  32. 32.
    Zhao Y, Si S, Wang L, Liao C, Tang P, Cao H (2014) Electrochemical study on polypyrrole microparticle suspension as flowing anode for manganese dioxide rechargeable flow battery. J Power Sources 248:962–968CrossRefGoogle Scholar
  33. 33.
    Zhao Y, Si S, Wang L, Tang P, Cao H (2014) Electrochemical behavior of polyaniline microparticle suspension as flowing anode for rechargeable lead dioxide flow battery. J Electrochem Soc 161:A330–A335CrossRefGoogle Scholar
  34. 34.
    Fan F, Woodford W, Li Z, Baram N, Smith KC, Helal A, McKinley GH, Carter WC, Chiang Y-M (2014) Polysulfide flow batteries enabled by percolating nanoscale conductor networks. Nano Lett 14:2210–2218CrossRefGoogle Scholar
  35. 35.
    Chen H, Zou Q, Liang Z, Liu H, Li Q, Lu Y-C (2015) Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries. Nat Commun 6. doi: 10.1038/ncomms6877
  36. 36.
    Porada S, Lee J, Weingarth D, Presser V (2014) Continuous operation of an electrochemical flow capacitor. Electrochem Commun 178–181Google Scholar
  37. 37.
    Oncsik T, Trefalt G, Csendes Z, Szilagyi I, Borkovec M (2014) Aggregation of negatively charged colloidal particles in the presence of multivalent cations. Langmuir 30:733–741CrossRefGoogle Scholar
  38. 38.
    Sinha P, Szilagyi I, Montes Ruiz-Cabello FJ, Maroni P, Borkovec M (2013) Attractive forces between charged colloidal particles induced by multivalent ions revealed by confronting aggregation and direct force measurements. J Phys Chem Lett 4:648–652CrossRefGoogle Scholar
  39. 39.
    Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333:712–717CrossRefGoogle Scholar
  40. 40.
    Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRefGoogle Scholar
  41. 41.
    Biesheuvel PM, Porada S, Levi M, Bazant MZ (2014) Attractive forces in microporous carbon electrodes for capacitive deionization. J Solid State Electrochem 1–12. doi: 10.1007/s10008-014-2383-5 Google Scholar
  42. 42.
    Porada S, Weingarth D, Hamelers HV, Bryjak M, Presser V, Biesheuvel M (2014) Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. J Mater Chem A 2:9313–9321CrossRefGoogle Scholar
  43. 43.
    Biesheuvel PM, Porada S, van der Wal A, Presser V (2013) Water desalination by capacitive deionization. In: Gogotsi Y, Presser V (eds) Carbon nanomaterials, 2nd edn. CRC Press, Boca Raton, p 419Google Scholar
  44. 44.
    Porada S, Borchardt L, Oschatz M, Bryjak M, Atchison J, Keesman K, Kaskel S, Biesheuvel P, Presser V (2013) Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ Sci 6:3700–3712CrossRefGoogle Scholar
  45. 45.
    Hatzell KB, Hatzell MC, Cook KM, Boota M, Housel GM, McBride A, Kumbur EC, Gogotsi Y (2015) The effect of oxidation of carbon material on suspension electrodes for flow-electrode capacitive deionization. Environ Sci Technol. doi: 10.1021/es5055989 Google Scholar
  46. 46.
    Jeon S-I, Park J-S, Yeo J-G, Yang S, Choi J, Kim DK (2014) Ion storage and energy recovery of flow-electrode capacitive deionization process. J Mater Chem A 2:6378–6383CrossRefGoogle Scholar
  47. 47.
    Gendel Y, Rommerskirchen AKE, David O, Wessling M (2014) Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology. Electrochem Commun 46:152–156CrossRefGoogle Scholar
  48. 48.
    Biesheuvel P, Van der Wal A (2010) Membrane capacitive deionization. J Membr Sci 346:256–262CrossRefGoogle Scholar
  49. 49.
    Hatzell KB, Iwama E, Ferris A, Daffos B, Urita K, Tzedakis T, Chauvet F, Taberna P-L, Gogotsi Y, Simon P (2014) Capacitive deionization concept based on suspension electrodes without Ion exchange membranes. Electrochem Commun 43:18–21CrossRefGoogle Scholar
  50. 50.
    Simon P, Gogotsi Y (2012) Capacitive energy storage in nanostructured carbon–electrolyte systems. Acc Chem Res 50:1094–1103Google Scholar
  51. 51.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  52. 52.
    Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45:2511–2518CrossRefGoogle Scholar
  53. 53.
    McDonough JK, Frolov AI, Presser V, Niu J, Miller CH, Ubieto T, Fedorov MV, Gogotsi Y (2012) Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon 50:3298–3309CrossRefGoogle Scholar
  54. 54.
    Gogotsi Y, Nikitin A, Ye H, Zhou W, Fischer JE, Yi B, Foley HC, Barsoum MW (2003) Nanoporous carbide-derived carbon with tunable pore size. Nat Mater 2:591–594CrossRefGoogle Scholar
  55. 55.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna P-L (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763CrossRefGoogle Scholar
  56. 56.
    Novoselov K, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRefGoogle Scholar
  57. 57.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  58. 58.
    Zhang C, Hatzell KB, Boota M, Dyatkin B, Beidaghi M, Long D, Qiao W, Kumbur EC, Gogotsi Y (2014) Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes. Carbon 77:155–164. doi: 10.1016/j.carbon.2014.05.017 CrossRefGoogle Scholar
  59. 59.
    Youssry M, Madec L, Soudan P, Cerbelaud M, Guyomard D, Lestriez B (2013) Nonaqueous carbon black suspensions for lithium-based redox flow batteries: rheology and simultaneous rheo-electrical behavior. Phys Chem Chem Phys 15:14476–14486CrossRefGoogle Scholar
  60. 60.
    Gogotsi YG, Nickel KG, Bahloul-Hourlier D, Merle-Mejean T, Khomenko GE, Skjerlie KP (1996) Structure of carbon produced by hydrothermal treatment of Β-Sic powder. J Mater Chem 6:595–604CrossRefGoogle Scholar
  61. 61.
    Basavalingu B, Calderon Moreno JM, Byrappa K, Gogotsi YG, Yoshimura M (2001) Decomposition of silicon carbide in the presence of organic compounds under hydrothermal conditions. Carbon 39:1763–1766CrossRefGoogle Scholar
  62. 62.
    Boylu F, Dinçer H, Ateşok G (2004) Effect of coal particle size distribution, volume fraction and rank on the rheology of coal–water slurries. Fuel Process Technol 85:241–250. doi: 10.1016/s0378-3820(03)00198-x CrossRefGoogle Scholar
  63. 63.
    Hatzell KB, Beidaghi M, Campos JW, Dennison CR, Kumbur EC, Gogotsi Y (2013) A high performance pseudocapacitive suspension electrode for the electrochemical flow capacitor. Electrochim Acta 111:888–897CrossRefGoogle Scholar
  64. 64.
    Dennison C, Beidaghi M, Hatzell KB, Campos J, Gogotsi Y, Kumbur E (2014) Effects of flow cell design on charge percolation and storage in the carbon slurry electrodes of electrochemical flow capacitors. J Power Sources 247:489–496CrossRefGoogle Scholar
  65. 65.
    Smith KC, Chiang Y-M, Carter WC (2014) Maximizing energetic efficiency in flow batteries utilizing non-Newtonian fluids. J Electrochem Soc 161:A486–A496CrossRefGoogle Scholar
  66. 66.
    Madec L, Youssry M, Cerbelaud M, Soudan P, Guyomard D, Lestriez B (2014) Electronic vs ionic limitations to electrochemical performance in Li4ti5o12-based organic suspensions for lithium-redox flow batteries. J Electrochem Soc 161:A693–A699CrossRefGoogle Scholar
  67. 67.
    Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46:1475–1488CrossRefGoogle Scholar
  68. 68.
    Bandosz TJ, Jagiello J, Schwarz JA, Krzyzanowski A (1996) Effect of surface chemistry on sorption of water and methanol on activated carbons. Langmuir 12:6480–6486CrossRefGoogle Scholar
  69. 69.
    Conway B, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14CrossRefGoogle Scholar
  70. 70.
    Hulicova‐Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen‐and oxygen‐containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19:438–447CrossRefGoogle Scholar
  71. 71.
    Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRefGoogle Scholar
  72. 72.
    Khomenko V, Raymundo-Piñero E, Béguin F (2010) A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J Power Sources 195:4234–4241CrossRefGoogle Scholar
  73. 73.
    Kim J, Lawler DF (2005) Characteristics of zeta potential distribution in silica particles. Bull Kor Chem Soc 26:1083CrossRefGoogle Scholar
  74. 74.
    Morrison ID, Ross S (2002) Colloidal dispersions: suspensions, emulsions, and foams. Wiley-Interscience, New YorkGoogle Scholar
  75. 75.
    Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRefGoogle Scholar
  76. 76.
    Sun Z, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C 112:10692–10699CrossRefGoogle Scholar
  77. 77.
    Sugiura M, Esumi K, Meguro K, Honda H (1985) Surface treatment of meso-carbon microbeads by oxygen plasma. Bull Chem Soc Jpn 58:2638–2640CrossRefGoogle Scholar
  78. 78.
    Fic K, Lota G, Meller M, Frackowiak E (2012) Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ Sci 5:5842–5850CrossRefGoogle Scholar
  79. 79.
    Hatzell K, Boota M, Kumbur E, Gogotsi Y (2015) Flowable conducting particle networks in redox-active electrolytes for grid energy storage. J Electrochem Soc 162:A5007–A5012CrossRefGoogle Scholar
  80. 80.
    Anjos DM, McDonough JK, Perre E, Brown GM, Overbury SH, Gogotsi Y, Presser V (2013) Pseudocapacitance and performance stability of quinone-coated carbon onions. Nano Energy 2:702–712CrossRefGoogle Scholar
  81. 81.
    Pognon G, Brousse T, Demarconnay L, Bélanger D (2011) Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. J Power Sources 196:4117–4122CrossRefGoogle Scholar
  82. 82.
    Boota M, Hatzell K, Kumbur E, Gogotsi Y (2015) Towards high‐energy‐density pseudocapacitive flowable electrodes by the incorporation of hydroquinone. ChemSusChem. doi: 10.1002/cssc.201402985 Google Scholar
  83. 83.
    Roldán S, Blanco C, Granda M, Menéndez R, Santamaría R (2011) Towards a further generation of high energy carbon based capacitors by using redox-active electrolytes. Angew Chem Int Ed 50:1699–1701CrossRefGoogle Scholar
  84. 84.
    Roldán S, González Z, Blanco C, Granda M, Menéndez R, Santamaría R (2011) Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. Electrochim Acta 56:3401–3405CrossRefGoogle Scholar
  85. 85.
    Yu H, Wu J, Lin J, Fan L, Huang M, Lin Y, Li Y, Yu F, Qiu Z (2013) A reversible redox strategy for Swcnt-based supercapacitors using a high-performance electrolyte. ChemPhysChem 14:394–399. doi: 10.1002/cphc.201200816 CrossRefGoogle Scholar
  86. 86.
    Kuang Y, Liu Z, Zhou H, Huang Z, Wang W, Zeng F (2013) Graphene covalenty functionalized with poly (P-phenylenediamine) as high performance electrode material for supercapacitor. J Mater Chem A 1:3454–3462CrossRefGoogle Scholar
  87. 87.
    Liu Z, Zhou H, Huang Z, Wang W, Zeng F, Kuang Y (2013) Graphene covalently functionalized with poly (P-phenylenediamine) as high performance electrode material for supercapacitors. J Mater Chem A 1:3454–3462CrossRefGoogle Scholar
  88. 88.
    Yu H, Wu J, Fan L, Luo GG, Lin J, Huang M (2012) A simple and high-effective electrolyte mediated with P-phenylenediamine for supercapacitor. J Mater Chem 22:19025–19030CrossRefGoogle Scholar
  89. 89.
    Yu H, Fan L, Wu J, Lin Y, Lin J, Huang M, Lan Z (2012) Redox-active alkaline electrolyte for carbon-based supercapacitor with pseudocapacitive performance and excellent cyclability. RSC Adv 2(17):6736–6740CrossRefGoogle Scholar
  90. 90.
    Khomenko V, Raymundo-Pinero E, Frackowiak E, Beguin F (2006) High-voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl Phys A 82:567–573CrossRefGoogle Scholar
  91. 91.
    Raymundo-Pinero E, Khomenko V, Frackowiak E, Beguin F (2005) Performance of manganese oxide/Cnts composites as electrode materials for electrochemical capacitors. J Electrochem Soc 152:A229–A235CrossRefGoogle Scholar
  92. 92.
    Bichat M, Raymundo-Piñero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48:4351–4361CrossRefGoogle Scholar
  93. 93.
    Aaron D, Liu Q, Tang Z, Grim G, Papandrew A, Turhan A, Zawodzinski T, Mench M (2012) Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J Power Sources 206:450–453CrossRefGoogle Scholar
  94. 94.
    Darling RM, Perry ML (2014) The influence of electrode and channel configurations on flow battery performance. J Electrochem Soc 161:A1381–A1387CrossRefGoogle Scholar
  95. 95.
    Li Z, Smith KC, Dong Y, Baram N, Fan FY, Xie J, Limthongkul P, Carter WC, Chiang Y-M (2013) Aqueous semi-solid flow cell: demonstration and analysis. Phys Chem Chem Phys 15:15833–15839CrossRefGoogle Scholar
  96. 96.
    Smith KC, Brunini VE, Dong Y, Chiang Y-M, Carter WC (2014) Electroactive-zone extension in flow-battery stacks. Electrochim Acta 147:460–469CrossRefGoogle Scholar
  97. 97.
    Boota M, Hatzell K, Beidaghi M, Dennison C, Kumbur E, Gogotsi Y (2014) Activated carbon spheres as a flowable electrode in electrochemical flow capacitors. J Electrochem Soc 161:A1078–A1083CrossRefGoogle Scholar
  98. 98.
    Wang C, Hong J (2007) Ionic/electronic conducting characteristics of Lifepo4 cathode materials the determining factors for high rate performance. Electrochem Solid-State Lett 10:A65–A69CrossRefGoogle Scholar
  99. 99.
    Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier, Amsterdam/New YorkzbMATHGoogle Scholar
  100. 100.
    Madec L, Youssry M, Cerbelaud M, Soudan P, Guyomard D, Lestriez B (2015) Surfactant for enhanced rheological, electrical, and electrochemical performance of suspensions for semisolid redox flow batteries and supercapacitors. Chem Plus Chem, 80(2):396–401Google Scholar
  101. 101.
    Chhabra RP, Richardson JF (2011) Non-Newtonian flow and applied rheology: engineering applications. Butterworth-Heinemann, Amsterdam/BostonGoogle Scholar
  102. 102.
    Tanner RI (2000) Engineering rheology. Oxford University Press, OxfordzbMATHGoogle Scholar
  103. 103.
    Ovarlez G, Cohen-Addad S, Krishan K, Goyon J, Coussot P (2013) On the existence of a simple yield stress fluid behavior. J Non-Newtonian Fluid Mech 193:68–79CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Material Science and Engineering, A.J. Drexel Nanomaterials InstituteDrexel UniversityPhiladelphiaUSA
  2. 2.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations