Skip to main content

Photocatalytic CO2 Reduction to CO by ZIF-9/TiO2

  • Chapter
  • First Online:
Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2798 Accesses

Abstract

Cocatalyst is crucial to the surface kinetic promotion of CO2 photoreduction reaction, because it can accelerate the transport of photoinduced electrons as well as lower the activation energy or overpotential for CO2 conversion reactions. Herein, we present the use of a cobalt-containing zeolitic imidazolate framework (ZIF-9) as a noble-metal-free multifunctional cocatalyst for enhancing the photocatalytic reduction of CO2 to CO by TiO2 photocatalysis. ZIF-9 features the functions of promoting the adsorption/activation of CO2, and facilitating the transfer of photogenerated electrons. By cooperating with TiO2 as a semiconductor photocatalyst to generate energized electrons and holes, ZIF-9 effectively boosted the CO2-to-CO transformation catalysis under simulated sunlight irradiation. Reaction conditions such as the reaction temperature, the reaction solvent, the type of the electron donor, and the water ratio in the reaction medium were investigated and optimized for operating effective CO2 reduction reactions mediated by the TiO2 semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  2. Rofer-DePoorter CK (2012) A comprehensive mechanism for the Fischer-Tropsch synthesis. Chem Rev 81:447–474

    Article  Google Scholar 

  3. Vennestrøm PNR, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed 50:10502–10509

    Article  Google Scholar 

  4. Sunley GJ, Watson DJ (2000) High productivity methanol carbonylation catalysis using iridium: the Cativa™ process for the manufacture of acetic acid. Catal Today 58:293–307

    Article  CAS  Google Scholar 

  5. Silvia JS, Cummins CC (2010) Ligand-based reduction of CO2 to CO mediated by an anionic niobium nitride complex. J Am Chem Soc 132:2169–2171

    Article  CAS  Google Scholar 

  6. Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chem Int Ed 53:6705–6709

    Article  CAS  Google Scholar 

  7. Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T (2012) Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem Int Ed 51:8008–8011

    Article  CAS  Google Scholar 

  8. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994

    Article  CAS  Google Scholar 

  9. Wen F, Li C (2013) Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc Chem Res 46:2355–2364

    Article  CAS  Google Scholar 

  10. Lehn JM, Ziessel R (1982) Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc Natl Acad Sci U S A 79:701–704

    Article  CAS  Google Scholar 

  11. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    Article  CAS  Google Scholar 

  12. Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. Phys Chem Chem Phys 2:5302–5307

    Article  CAS  Google Scholar 

  13. Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108:346–354

    Article  CAS  Google Scholar 

  14. Liao F, Huang Y, Ge J, Zheng W, Tedsree K, Collier P, Hong X, Tsang SC (2011) Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 50:2162–2165

    Article  CAS  Google Scholar 

  15. Yu J, Jin J, Cheng B, Jaroniec M (2014) A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J Mater Chem A 2:3407–3416

    Article  CAS  Google Scholar 

  16. Wang Y, Li B, Zhang C, Cui L, Kang S, Li X, Zhou L (2013) Ordered mesoporous CeO2-TiO2 composites: highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl Catal B Environ 130–131:277–284

    Article  Google Scholar 

  17. Park H, Choi JH, Choi KM, Lee DK, Kang JK (2012) Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane. J Mater Chem 22:5304–5307

    Article  CAS  Google Scholar 

  18. Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T (2010) Visible-light-induced selective CO2 reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta2O5 semiconductor. Angew Chem Int Ed 49:5101–5105

    Article  CAS  Google Scholar 

  19. Li Y, Wang WN, Zhan Z, Woo MH, Wu CY, Biswas P (2010) Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl Catal B Environ 100:386–392

    Article  CAS  Google Scholar 

  20. Zhang Q, Li Y, Ackerman EA, Gajdardziska-Josifovska M, Li H (2011) Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Appl Catal A Gen 400:195–202

    Article  CAS  Google Scholar 

  21. Anpo M, Yamashita H, Ichihashi Y, Ehara S (1995) Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. J Electroanal Chem 396:21–26

    Article  Google Scholar 

  22. Tseng IH, Chang WC, Wu JCS (2002) Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl Catal B Environ 37:37–48

    Article  CAS  Google Scholar 

  23. Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758

    Article  CAS  Google Scholar 

  24. Zhai Q, Xie S, Fan W, Zhang Q, Wang Y, Deng W, Wang Y (2013) Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew Chem Int Ed 52:5776–5779

    Article  CAS  Google Scholar 

  25. Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) FTIR study of the low-temperature water–gas shift reaction on Au/Fe2O3 and Au/TiO2 catalysts. J Catal 188:176–185

    Article  CAS  Google Scholar 

  26. Sekizawa K, Maeda K, Domen K, Koike K, Ishitani O (2013) Artificial Z-scheme constructed with a supramolecular metal complex and semiconductor for the photocatalytic reduction of CO2. J Am Chem Soc 135:4596–4599

    Article  CAS  Google Scholar 

  27. Woolerton TW, Sheard S, Reisner E, Pierce E, Ragsdale SW, Armstrong FA (2010) Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc 132:2132–2133

    Article  CAS  Google Scholar 

  28. Kohno Y, Hayashi H, Takenaka S, Tanaka T, Funabiki T, Yoshida S (1999) Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J Photochem Photobio A Chem 126:117–123

    Article  CAS  Google Scholar 

  29. Maeda K, Sekizawa K, Ishitani O (2013) A polymeric-semiconductor–metal-complex hybrid photocatalyst for visible-light CO2 reduction. Chem Commun 49:10127–10129

    Article  CAS  Google Scholar 

  30. Wang C, Xie Z, deKrafft KE, Lin W (2011) Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454

    Article  CAS  Google Scholar 

  31. Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101:2632–2636

    Article  CAS  Google Scholar 

  32. Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148:335–340

    Article  CAS  Google Scholar 

  33. Qin Z, Thomas CM, Lee S, Coates GW (2003) Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew Chem Int Ed 42:5484–5487

    Article  CAS  Google Scholar 

  34. Cohen CT, Chu T, Coates GW (2005) Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J Am Chem Soc 127:10869–10878

    Article  CAS  Google Scholar 

  35. Louie J, Gibby JE, Farnworth MV, Tekavec TN (2002) Efficient nickel-catalyzed [2 + 2 + 2] cycloaddition of CO2 and diynes. J Am Chem Soc 124:15188–15189

    Article  CAS  Google Scholar 

  36. Matsuoka S, Yamamoto K, Ogata T, Kusaba M, Nakashima N, Fujita E, Yanagida S (1993) Efficient and selective electron mediation of cobalt complexes with cyclam and related macrocycles in the p-terphenyl-catalyzed photoreduction of carbon dioxide. J Am Chem Soc 115:601–609

    Article  CAS  Google Scholar 

  37. Fischer H, Tom GM, Taube H (1976) Intramolecular electron transfer mediated by 4,4′-bipyridine and related bridging groups. J Am Chem Soc 98:5512–5517

    Article  CAS  Google Scholar 

  38. Rillema DP, Allen G, Meyer TJ, Conrad D (1983) Redox properties of ruthenium(II) tris chelate complexes containing the ligands 2,2′-bipyrazine, 2,2′-bipyridine, and 2,2′-bipyrimidine. Inorg Chem 22:1617–1622

    Article  CAS  Google Scholar 

  39. Willner I, Maidan R, Mandler D, Duerr H, Doerr G, Zengerle K (1987) Photosensitized reduction of carbon dioxide to methane and hydrogen evolution in the presence of ruthenium and osmium colloids: strategies to design selectivity of products distribution. J Am Chem Soc 109:6080–6086

    Article  CAS  Google Scholar 

  40. Trammell SA, Meyer TJ (1999) Diffusional mediation of surface electron transfer on TiO2. J Phys Chem B 103:104–107

    Article  CAS  Google Scholar 

  41. Saji T, Aoyagui S (1975) Electron-transfer kinetics of transition-metal complexes in lower oxidation states: IV1. Electrochemical electron-transfer rates of tris(2,2′-bipyridine) complexes of iron, ruthenium, osmium, chromium, titanium, vanadium and molybdenum. J Electroanal Chem 63:31–37

    Article  CAS  Google Scholar 

  42. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    Article  CAS  Google Scholar 

  43. Stroppa A, Jain P, Barone P, Marsman M, Perez-Mato JM, Cheetham AK, Kroto HW, Picozzi S (2011) Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal–organic framework. Angew Chem Int Ed 50:5847–5850

    Article  CAS  Google Scholar 

  44. Cooper AI, Rosseinsky MJ (2009) Metal–organic frameworks: improving pore performance. Nat Chem 1:26–27

    Article  CAS  Google Scholar 

  45. James SL (2003) Metal-organic frameworks. Chem Soc Rev 32:276–288

    Article  CAS  Google Scholar 

  46. Hayashi H, Cote AP, Furukawa H, O'Keeffe M, Yaghi OM (2007) Zeolite a imidazolate frameworks. Nat Mater 6:501–506

    Article  CAS  Google Scholar 

  47. Zhang JP, Zhang YB, Lin JB, Chen XM (2012) Metal azolate frameworks: from crystal engineering to functional materials. Chem Rev 112:1001–1033

    Article  CAS  Google Scholar 

  48. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191

    Article  CAS  Google Scholar 

  49. Liu Q, Low ZX, Li L, Razmjou A, Wang K, Yao J, Wang H (2013) ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J Mater Chem A 1:11563–11569

    Article  CAS  Google Scholar 

  50. Wang B, Cote AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–211

    Article  CAS  Google Scholar 

  51. Miralda CM, Macias EE, Zhu M, Ratnasamy P, Carreon MA (2011) Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal 2:180–183

    Article  Google Scholar 

  52. Dimitrakakis C, Easton CD, Muir BW, Ladewig BP, Hill MR (2013) Spatial control of zeolitic imidazolate framework growth on flexible substrates. Cryst Growth Des 13:4411–4417

    Article  CAS  Google Scholar 

  53. Aguado S, Bergeret G, Titus MP, Moizan V, Nieto-Draghi C, Bats N, Farrusseng D (2011) Guest-induced gate-opening of a zeolite imidazolate framework. New J Chem 35:546–550

    Article  CAS  Google Scholar 

  54. Reyes SC, Santiesteban JG, Ni Z, Paur CS, Kortunov P, Zengel J, Deckman HW (2009) US 2009/0214407, Accessed 27 Aug 2009

    Google Scholar 

  55. Reyes SC, Ni Z, Paur CS, Kortunov P, Zengel J, Deckman HW, Santiesteban JG (2009) US 2009/0211441, Accessed 27 Aug 2009

    Google Scholar 

  56. Wang S, Yao W, Lin J, Ding Z, Wang X (2014) Cobalt imidazolate metal–organic frameworks photosplit CO2 under mild reaction conditions. Angew Chem Int Ed 53:1034–1038

    Article  CAS  Google Scholar 

  57. Wang S, Wang X (2015) Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl Catal B Environ 162:494–500

    Article  CAS  Google Scholar 

  58. Wang S, Lin J, Wang X (2014) Semiconductor–redox catalysis promoted by metal–organic frameworks for CO2 reduction. Phys Chem Chem Phys 16:14656–14660

    Article  CAS  Google Scholar 

  59. Wang S, Hou Y, Lin S, Wang X (2014) Water oxidation electrocatalysis by a zeolitic imidazolate framework. Nanoscale 6:9930–9934

    Article  CAS  Google Scholar 

  60. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644

    Article  CAS  Google Scholar 

  61. Wang C, Luo H, Jiang D, Li H, Dai S (2010) Carbon dioxide capture by superbase-derived protic ionic liquids. Angew Chem Int Ed 49:5978–5981

    Article  CAS  Google Scholar 

  62. Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927

    Article  CAS  Google Scholar 

  63. Wen F, Wang X, Huang L, Ma G, Yang J, Li C (2012) A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe2S2] hydrogenase mimic as hydrogen evolution catalyst. ChemSusChem 5:849–853

    Article  CAS  Google Scholar 

  64. Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578

    Article  CAS  Google Scholar 

  65. Kho YK, Iwase A, Teoh WY, Mädler L, Kudo A, Amal R (2010) Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J Phys Chem C 114:2821–2829

    Article  CAS  Google Scholar 

  66. Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA (1996) Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 118:1729–1736

    Article  CAS  Google Scholar 

  67. Kim KH, Kim Y (2008) Theoretical studies for Lewis acid–base interactions and C–H···O weak hydrogen bonding in various CO2 complexes. J Phys Chem A 112:1596–1603

    Article  CAS  Google Scholar 

  68. Schneider J, Jia H, Muckerman JT, Fujita E (2012) Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem Soc Rev 41:2036–2051

    Article  CAS  Google Scholar 

  69. Soedergren S, Hagfeldt A, Olsson J, Lindquist SE (1994) Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552–5556

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is financially supported by the National Basic Research Program of China (2013CB632405), the National Natural Science Foundation of China (21425309), the State Key Laboratory of NBC Protection for Civilian (SKLNBC2013004K), and the Specialized Research Fund for the Doctoral Program of Higher Education (20133514110003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinchen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, S., Wang, X. (2016). Photocatalytic CO2 Reduction to CO by ZIF-9/TiO2 . In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_28

Download citation

Publish with us

Policies and ethics