Skip to main content

Silica-Supported Metal Complex Photocatalysts

  • Chapter
  • First Online:
Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter highlights the precise architecture in the exploitation of hybrid photocatalysts combined with visible-light-responsive metal complexes and inorganic materials enabling efficient photochemical molecular transformations including selective oxidation using molecular oxygen and hydrogen production from an aqueous solution. The immobilization techniques of metal complexes are based on (1) encapsulation within the zeolite cavity, (2) anchoring within the mesoporous channel, and (3) anchoring onto the plasmonic colloidal Ag nanoparticle. The design strategy described here offers an attractive route for practical nanostructured photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Descalzo AB, Martínez-Máñez R, Sancenón F, Hoffmann K, Rurack K (2006) The supramolecular chemistry of organic–inorganic hybrid materials. Angew Chem Int Ed 45:5924–5948

    Article  CAS  Google Scholar 

  2. Yamashita H, Mori K (2007) Applications of single-site photocatalysts implanted within the silica matrixes of zeolite and mesoporous silica. Chem Lett 36:348–353

    Article  CAS  Google Scholar 

  3. Yamashita H, Mori K, Shironita S, Horiuchi Y (2008) Applications of single-site photocatalysts to the design of unique surface functional materials. Catal Surv Asia 12:88–100

    Article  CAS  Google Scholar 

  4. Mori K, Kagohara K, Yamashita H (2008) Synthesis of tris(2,2′-bipyridine)iron(II) complexes in zeolite Y cages: influence of exchanged alkali metal cations on physicochemical properties and catalytic activity. J Phys Chem C 112:2593–2600

    Article  CAS  Google Scholar 

  5. Wight AP, Davis ME (2002) Design and preparation of organic–inorganic hybrid catalysts. Chem Rev 102:3589–3614

    Article  CAS  Google Scholar 

  6. Qian X, Fuku K, Kuwahara Y, Kamegawa T, Mori K, Yamashita H (2014) Design and functionalization of photocatalytic systems within mesoporous silica. ChemSusChem 7:1528–1536

    Article  CAS  Google Scholar 

  7. Dearmond MK, Myrick ML (1989) The life and times of [Ru(bpy)3]2+-localized orbitals and other strange occurrences. Acc Chem Res 22:364–370

    Article  CAS  Google Scholar 

  8. McMillin DR, Moore JJ (2002) Luminescence that lasts from Pt(trpy)Cl+ derivatives (trpy=2,2′;6′,2″-terpyridine). Coord Chem Rev 229:113–121

    Article  CAS  Google Scholar 

  9. Schubert US, Ulbricht C, Beyer B, Friebe C, Winter A (2009) Recent developments in the application of phosphorescent iridium(III) complex systems. Adv Mater 21:4418–4441

    Article  Google Scholar 

  10. Hager GD, Crosby GA (1975) Charge-transfer excited states of ruthenium(II) complexes. I. Quantum yield and decay measurements. J Am Chem Soc 97:7031–7037

    Article  CAS  Google Scholar 

  11. Mori K, Tottori M, Watanabe K, Che M, Yamashita H (2011) Photoinduced aerobic oxidation driven by phosphorescence Ir(III) complex anchored to mesoporous silica. J Phys Chem C 115:21358–21362

    Article  CAS  Google Scholar 

  12. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Vonzelewsky A (1988) Ru(II) Pplypyridine complexes – photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord Chem Rev 84:85–277

    Article  CAS  Google Scholar 

  13. Ramamurthy V, Eaton DF, Caspar JV (1992) Photochemical and photophysical studies of organic molecules included within zeolites. Acc Chem Res 25:299–307

    Article  CAS  Google Scholar 

  14. Mori K, Kawashima M, Kagohara K, Yamashita H (2008) Influence of exchanged alkali metal cations within zeolite Y cages on spectroscopic and photooxidation properties of the incorporated tris(2,2′-bipyridine)ruthenium(II) complexes. J Phys Chem C 112:19449–19455

    Article  CAS  Google Scholar 

  15. Quayle WH, Lunsford JH (1982) Tris(2,2′-bipyridine)ruthenium(III) in zeolite Y: characterization and reduction on exposure to water. Inor Chem 21:97–103

    Article  CAS  Google Scholar 

  16. Martis M, Mori K, Yamashita H (2014) Control of physicochemical properties and catalytic activity of tris(2,2[prime or minute]-bipyridine)iron(ii) encapsulated within the zeolite Y cavity by alkaline earth metal cations. Dalton Trans 43:1132–1138

    Article  CAS  Google Scholar 

  17. Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, Yamashita H (2013) The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. Angew Chem Int Ed 52:7446–7450

    Article  CAS  Google Scholar 

  18. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604

    Article  CAS  Google Scholar 

  19. Horiuchi Y, Shimada M, Kamegawa T, Mori K, Yamashita H (2009) Size-controlled synthesis of silver nanoparticles on Ti-containing mesoporous silica thin film and photoluminescence enhancement of rhodamine 6G dyes by surface plasmon resonance. J Mater Chem 19:6745–6749

    Article  CAS  Google Scholar 

  20. Mori K, Kawashima M, Che M, Yamashita H (2010) Enhancement of the photoinduced oxidation activity of a ruthenium(II) complex anchored on silica-coated silver nanoparticles by localized surface plasmon resonance. Angew Chem Int Ed 49:8598–8601, S8598/1–S8598/4

    Article  CAS  Google Scholar 

  21. Kerker M (1985) The optics of colloidal silver: something old and something new. J Colloid Inter Sci 105:297–314

    Article  CAS  Google Scholar 

  22. Miskowski VM, Houlding VH (1989) Electronic spectra and photophysics of platinum(II) complexes with.alpha.-diimine ligands. Solid-state effects. 1. Monomers and ligand.pi. dimers. Inor Chem 28:1529–1533

    Article  CAS  Google Scholar 

  23. Mori K, Watanabe K, Kawashima M, Che M, Yamashita H (2011) Anchoring of Pt(II) pyridyl complex to mesoporous silica materials: enhanced photoluminescence emission at room temperature and photooxidation activity using molecular oxygen. J Phys Chem C 115:1044–1050

    Article  CAS  Google Scholar 

  24. Mori K, Watanabe K, Fuku K, Yamashita H (2012) Photoluminescence emission and photoinduced hydrogen production driven by PtII pyridyl complexes anchored onto mesoporous silica. Chem Eur J 18:415–418

    Article  CAS  Google Scholar 

  25. Mori K, Watanabe K, Terai Y, Fujiwara Y, Yamashita H (2012) Hybrid mesoporous-silica materials functionalized by PtII complexes: correlation between the spatial distribution of the active center, photoluminescence emission, and photocatalytic activity. Chem Eur J 18:11371–11378

    Article  CAS  Google Scholar 

  26. Kobayashi K, Sato H, Kishi S, Kato M, Ishizaka S, Kitamura N, Yamagishi A (2004) Spectroscopic evidence for Pt–Pt interaction in a langmuir-blodgett film of an amphiphilic platinum(II) complex. J Phys Chem B 108:18665–18669

    Article  CAS  Google Scholar 

  27. Kalyanasundaram K, Kiwi J, Grätzel M (1978) Hydrogen evolution from water by visible light, a homogeneous three component test system for redox catalysis. Helv Chim Acta 61:2720–2730

    Article  CAS  Google Scholar 

  28. Mori K, Aoyama J, Kawashima M, Yamashita H (2014) Visible-light driven H2 production utilizing iridium and rhodium complexes intercalated into a zirconium phosphate layered matrix. Dalton Trans 43:10541–10547

    Article  CAS  Google Scholar 

  29. Mori K, Ogawa S, Martis M, Yamashita H (2012) Intercalation of Pt(II) terpyridine complexes into layered K4Nb6O17 and visible-light-driven photocatalytic production of H2. J Phys Chem C 116:18873–18877

    Article  CAS  Google Scholar 

  30. Kawashima M, Mori K, Aoyama J, Yamashita H (2014) Synthesis and characterization of Ir and Rh complexes supported on layered K4Nb6O17 as a heterogeneous photocatalyst for visible-light-induced hydrogen evolution. Bull Chem Soc Jpn 87:874–881

    Article  CAS  Google Scholar 

  31. Mori K, Kakudo H, Yamashita H (2014) Creation of nickel-based active species within a macroreticular acidic resin: a noble-metal-free heterogeneous catalyst for visible-light-driven H2 evolution from water. ACS Catal 4:4129–4135

    Article  CAS  Google Scholar 

  32. Mori K, Kubota Y, Yamashita H (2013) Iridium and rhodium complexes within a macroreticular acidic resin: a heterogeneous photocatalyst for visible-light driven H2 production without an electron mediator. Chem Asian J 8:3207–3213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohsuke Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mori, K., Yamashita, H. (2016). Silica-Supported Metal Complex Photocatalysts. In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_26

Download citation

Publish with us

Policies and ethics