Skip to main content

Formation of BiOCl/Bi2O3 and Related Materials for Efficient Visible-Light Photocatalysis

  • Chapter
  • First Online:
Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2713 Accesses

Abstract

Novel heterojunction structures of BiOCl/Bi2O3 exhibit remarkable photocatalytic activities in decomposing organic compounds in gas or aqueous phase under visible-light irradiation, even though individual BiOCl and Bi2O3 show negligible catalytic efficiency. In this BiOCl/Bi2O3 system, the BiOCl with a band gap of 3.7 eV works as a main photocatalyst, while the Bi2O3 with a band gap of 2.6 eV plays a role as a sensitizer absorbing visible light. It is deduced that its photocatalytic activity is caused by the inter-semiconductor hole transfer between the valence band (VB) of Bi2O3 and BiOCl. Moreover, visible-light photocatalytic efficiency of BiOCl/Bi2O3 nanocomposite can be further enhanced by covering their surfaces with molecular WO3 species. It is found that monolayer coverage of WO3 maximizes the photocatalytic activity of WO3/BiOCl/Bi2O3 system, whereas further increase of WO3 concentration sharply decreases its activity, suggesting that the role of molecular WO3 on the surface of BiOCl/Bi2O3 is to improve the adsorption of organic species as well as OH or H2O. Furthermore, the surface coverage of WO3 protects BiOCl/Bi2O3 system, thus notably extending its chemical- and photostability during photocatalytic reactions. BiOCl/Bi3O4Cl nanocomposites also exhibit considerable visible light photocatalytic efficiency. Herein the Bi3O4Cl plays a role as a sensitizer absorbing visible-light, and the significant visible-light photocatalytic activity of the BiOCl/Bi3O4Cl system originates from the hole (h+) transfer between the VB of Bi3O4Cl and BiOCl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192

    Article  CAS  Google Scholar 

  3. Zhang H, Chen G, Bahnemann DJ (2009) Photoelectrocatalytic materials for environmental applications. Mater Chem 19:5089–5121

    Article  CAS  Google Scholar 

  4. Muller HD, Steinbach F (1970) Decomposition of isopropyl alcohol photosensitized by zinc oxide. Nature 225:728–729

    Article  CAS  Google Scholar 

  5. Dunkle SS, Helmich RJ, Suslick KS (2009) BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J Phys Chem C 113:11980–11983

    Article  CAS  Google Scholar 

  6. Wenjie L, Da P, Zhang Y, Wang Y, Lin X, Gong X, Zheng G (2014) WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano 8:11770–11777

    Article  CAS  Google Scholar 

  7. Guan M, Zhao X, Duan L, Cao M, Guo W, Liu J, Zhang W (2013) Controlled synthesis of SnO2 nanostructures with different morphologies and the influence on photocatalysis properties. J Appl Phys 114:114302–114307

    Article  CAS  Google Scholar 

  8. Yuan H, Xu J (2010) Preparation, characterization and photocatalytic activity of nanometer SnO2. Int J Chem Eng Appl 1:241–246

    CAS  Google Scholar 

  9. Hernandez-Alonso MD, Fresno F, Sareza S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257

    Article  CAS  Google Scholar 

  10. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  11. Ou Y, Lin J, Fang S, Liao D (2007) Study on the preparation of ultrafine mesoporous TiO2 with controllable crystalline phase and its photocatalytic activities. Catal Commun 8:936–940

    Article  CAS  Google Scholar 

  12. Palmisano G, Augugliaro V, Pagliaro M, Palmisano L (2007) Photocatalysis: a promising route for 21st century organic chemistry. Chem Commun 43:3425–3437

    Article  CAS  Google Scholar 

  13. Chen CC, Ma WH, Zhao JC (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219

    Article  CAS  Google Scholar 

  14. Wang J, Tafen DN, Lewis JP, Hong ZL, Manivannan A, Zhi MJ, Li M, Wu NQ (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297

    Article  CAS  Google Scholar 

  15. In S, Orlov A, Berg R, Garcia F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J Am Chem Soc 129:13790–13791

    Article  CAS  Google Scholar 

  16. Borgarello E, Kiwi J, Gratzel M, Pelizzetti E, Visca M (1982) Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J Am Chem Soc 104:2996–3002

    Article  CAS  Google Scholar 

  17. Nakhatea GG, Nikama VS, Kanadea KG, Arbujb S, Kaleb BB, Baegc JO (2010) Hydrothermally derived nanosized Ni-doped TiO2: a visible light driven photocatalyst for methylene blue degradation. Mater Chem Phys 124:976–981

    Article  CAS  Google Scholar 

  18. Klosek S, Raftery D (2001) Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. J Phys Chem B 105:2815–2819

    Article  CAS  Google Scholar 

  19. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Article  Google Scholar 

  20. Bouras P, Stathatos E, Lianos P (2007) Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Appl Catal B 73:51–59

    Article  CAS  Google Scholar 

  21. Peng B, Meng X, Tang F, Ren X, Chen D, Ren J (2009) General synthesis and optical properties of monodisperse multifunctional metal-ion-doped TiO2 hollow particles. J Phys Chem C 113:20240–20245

    Article  CAS  Google Scholar 

  22. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  23. Tachikawa T, Tojo S, Kawai K, Endo M, Fujitsuka M, Ohno T, Nishijima K, Miyamoto Z, Majima T (2004) Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J Phys Chem B 108:19299–19306

    Article  CAS  Google Scholar 

  24. Dong F, Wang H, Wu Z (2009) One-step “green” synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity. J Phys Chem C 113:16717–16723

    Article  CAS  Google Scholar 

  25. Yu JC, Ho W, Yu J, Yip H, Wong PK, Zhao J (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. J Environ Sci Technol 39:1175–1179

    Article  CAS  Google Scholar 

  26. Stengl V, Houskova V, Bakardjieva S, Murafa N (2010) Photocatalytic activity of boron-modified titania under UV and visible-light illumination. ACS Appl Mater Interfaces 2:575–580

    Article  CAS  Google Scholar 

  27. Hernandez-Alonso MD, Fresno F, Sareza S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257

    Article  CAS  Google Scholar 

  28. Dunkle SS, Helmich RJ, Suslick KS (2009) BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J Phys Chem C 113:11980–11983

    Article  CAS  Google Scholar 

  29. Yanhui Z, Yi-Jun X (2014) Bi2WO6: a highly chemoselective visible light photocatalyst toward aerobic oxidation of benzylic alcohols in water. RSC Adv 4:2904–2910

    Article  Google Scholar 

  30. Tang J, Zou Z, Ye J (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chem Int Ed 43:4463–4466

    Article  CAS  Google Scholar 

  31. Dong HG, Hwang W, Lee JS (2004) An undoped, single-phase oxide photocatalyst working under visible light. J Am Chem Soc 126:8912–8913

    Article  CAS  Google Scholar 

  32. He H, Yin J, Li Y, Zhang Y, Qiu H, Xu J, Xu T, Wang C (2014) Size controllable synthesis of single-crystal ferroelectric Bi4Ti3O12 nanosheet dominated with {001} facets toward enhanced visible-light-driven photocatalytic activities. Appl Catal B 156–157:35–43

    Article  CAS  Google Scholar 

  33. Liu B, Fang Y, Li Z, Xu S (2015) Visible-light nanostructured photocatalysts – a review. J Nanosci Nanotechnol 15:889–920

    Article  CAS  Google Scholar 

  34. Gusain M, Rawat P, Nagarajan R (2014) Soft chemical synthesis of Ag3SbS3 with efficient and recyclable visible light photocatalytic properties. Mater Res Bull 60:872–875

    Article  CAS  Google Scholar 

  35. Bessekhouad Y, Chaoui N, Trzpit M, Ghazzal N, Robert D, Weber JV (2006) UV–vis versus visible degradation of acid orange II in a coupled CdS/TiO2 semiconductors suspension. J Photochem Photobiol A 183:218–224

    Article  CAS  Google Scholar 

  36. Bera S, Rawal SB, Kim HJ, Lee WI (2014) Novel coupled structures of FeWO4/TiO2 and FeWO4/TiO2/CdS designed for highly efficient visible-light photocatalysis. ACS Appl Mater Interfaces 6:9654–9663

    Article  CAS  Google Scholar 

  37. Kim YJ, Gao B, Han SY, Jung MH, Chakraborty AK, Ko TG, Lee CM, Lee WI (2009) Heterojunction of FeTiO3 nanodisc and TiO2 nanoparticle for a novel visible light photocatalyst. J Phys Chem C 113:19179–19184

    Article  CAS  Google Scholar 

  38. Rawal SB, Chakraborty AK, Kim YJ, Kim HJ, Lee WI (2012) Double-heterojunction structure of SbxSn1-xO2/TiO2/CdSe for efficient decomposition of gaseous 2-propanol under visible-light irradiation. RSC Adv 2:622–630

    Article  CAS  Google Scholar 

  39. Rawal SB, Sang SD, Lee WI (2012) Novel Ag3PO4/TiO2 composites for efficient decomposition of gaseous 2-propanol under visible-light irradiation. Catal Commun 17:131–135

    Article  CAS  Google Scholar 

  40. Rawal SB, Bera S, Lee WI (2012) Visible-light photocatalytic properties of W18O49/TiO2 and WO3/TiO2 heterocomposites. Catal Lett 142:1482–1488

    Article  CAS  Google Scholar 

  41. Kim JC, Choi J, Lee YB, Hong JH, Lee JI, Yang JW, Lee WI, Hur NH (2006) Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem Commun 48:5024–5026

    Article  CAS  Google Scholar 

  42. Zhang M, Xu Y, Lv J, Yang L, Jiang X, He G, Song X, Sun Z (2014) Capability of coupled CdSe/TiO2 heterogeneous structure for photocatalytic degradation and photoconductivity. Nanoscale Res Lett 9:1–7

    Article  CAS  Google Scholar 

  43. Paola AD, Palmisano L, Venezia AM, Augugliaro V (2009) Coupled semiconductor systems for photocatalysis. Preparation and characterization of polycrystalline mixed WO3/WS2 powders. J Phys Chem B 103:8236–8244

    Article  CAS  Google Scholar 

  44. Gopidas KR, Bohorquez M, Kamat PV (1990) Photophysical and photochemical aspects of coupled semiconductors. Charge-transfer processes in colloidal CdS-TiO2, and CdS-AgI systems. J Phys Chem 94:6435–6440

    Article  CAS  Google Scholar 

  45. Zhang H, Ouyang S, Li Z, Liu L, Yu T, Ye J, Zou Z (2006) Preparation, characterization and photocatalytic activity of polycrystalline Bi2O3/SrTiO3 composite powders. J Phys Chem Solids 67:2501–2505

    Article  CAS  Google Scholar 

  46. Zhang J, Zhu H, Zheng S, Pan F, Wang T (2009) TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation. ACS Appl Mater Interfaces 1:2111–2114

    Article  CAS  Google Scholar 

  47. Bessekhouad Y, Robert D, Weber JV (2005) Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal Today 101:315–321

    Article  CAS  Google Scholar 

  48. Liu H, Yang W, Ma Y, Yao J (2006) Extended visible light response of binary TiO2-Ti2O3 photocatalyst prepared by a photo-assisted sol–gel method. Appl Catal A 299:218–223

    Article  CAS  Google Scholar 

  49. Rawal SB, Bera S, Lee D, Jang DJ, Lee WI (2013) Design of visible-light photocatalysts by coupling of narrow bandgap semiconductors and TiO2: effect of their relative energy band positions on the photocatalytic efficiency. Catal Sci Technol 3:1822–1830

    Article  CAS  Google Scholar 

  50. Agrios AG, Pichat P (2005) State of the art and perspectives on materials and applications of photocatalysis over TiO2. J Appl Electrochem 35:655–663

    Article  CAS  Google Scholar 

  51. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C 9:1–12

    Article  CAS  Google Scholar 

  52. Wang C, Shao C, Liuc Y, Zhang L (2008) Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning. Scr Mater 59:332–335

    Article  CAS  Google Scholar 

  53. Ye L, Su Y, Jin X, Xie H, Zhang C (2014) Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environ Sci Nano 1:90–112

    Article  CAS  Google Scholar 

  54. Zhang KL, Liu CM, Huang FQ, Zheng C, Wang WD (2006) Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B 68:125–129

    Article  CAS  Google Scholar 

  55. Xiong ZG, Zhao XS (2012) Nitrogen-doped titanate-anatase core-shell nanobelts with exposed {101} anatase facets and enhanced visible light photocatalytic activity. J Am Chem Soc 134:5754–5757

    Article  CAS  Google Scholar 

  56. Hao H, Xu Y, Liu P, Zhang G (2015) BiOCl nanostructures with different morphologies: tunable synthesis and visible-light-driven photocatalytic properties. Chin Chem Lett 26:133–136

    Article  CAS  Google Scholar 

  57. Gao X, Zhang X, Wang Y, Peng S, Yue B, Fan C (2015) Rapid synthesis of hierarchical BiOCl microspheres for efficient photocatalytic degradation of carbamazepine under simulated solar irradiation. Chem Eng J 263:419–426

    Article  CAS  Google Scholar 

  58. Cheng G, Xiongz J, Stadler FJ (2013) Facile template-free and fast refluxing synthesis of 3D desertrose-like BiOCl nanoarchitectures with superior photocatalytic activity. New J Chem 37:3207–3213

    Article  CAS  Google Scholar 

  59. Sarwan B, Pare B, Acharya AD (2014) The effect of oxygen vacancies on the photocatalytic activity of BiOCl nanocrystals prepared by hydrolysis and UV light irradiation. Mater Sci Semicond Process 25:89–97

    Article  CAS  Google Scholar 

  60. Weng S, Pei Z, Zheng Z, Hu J, Liu P (2013) Exciton-free, nonsensitized degradation of 2-naphthol by facet-dependent BiOCl under visible light: novel evidence of surface-state photocatalysis. ACS Appl Mater Interfaces 5:12380–12386

    Article  CAS  Google Scholar 

  61. Cui Z, Mi L, Zeng D (2013) Oriented attachment growth of BiOCl nanosheets with exposed {110} facets and photocatalytic activity of the hierarchical nanostructures. J Alloys Compd 549:70–76

    Article  CAS  Google Scholar 

  62. Li L, Zhang M, Liu Y, Zhang X (2014) Hierarchical assembly of BiOCl nanosheets onto bicrystalline TiO2 nanofiber: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. J Colloid Interface Sci 435:26–33

    Article  CAS  Google Scholar 

  63. Guan M, Xiao C, Zhang J, Fan S, An R, Cheng Q, Xie J, Zhou M, Ye B, Xie Y (2013) Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J Am Chem Soc 135:10411–10417

    Article  CAS  Google Scholar 

  64. Xie F, Mao X, Fan C, Wang Y (2014) Facile preparation of Sn-doped BiOCl photocatalyst with enhanced photocatalytic activity for benzoic acid and rhodamine B degradation. Mater Sci Semicond Process 27:380–389

    Article  CAS  Google Scholar 

  65. Li Y, Li C, Zhang Z, Zhang Y, Sun X, Si H, Zhang J (2014) Black BiOCl with disorder surface structure prepared by Fe reduction and the enhanced photocatalytic activity. Solid State Sci 34:107–112

    Article  CAS  Google Scholar 

  66. Nussbaum M, Shaham-Waldmann N, Paz Y (2014) Synergistic photocatalytic effect in Fe, Nb-doped BiOCl. J Photochem Photobiol A 290:11–21

    Article  CAS  Google Scholar 

  67. Xie F, Mao X, Fan C, Wang Y (2014) Facile preparation of Sn-Doped BiOCl photocatalyst with enhanced photocatalytic activity for benzoic acid and rhodamine B degradation. Mater Sci Semicond Process 27:380–389

    Article  CAS  Google Scholar 

  68. Pu F, Lu X, Xia Y, Huang W, Liz Z (2014) Preparation of surface-sulfurized nanoflake-like BiOCl layered semiconductor films with interbedded S2− for enhanced photoelectrochemical performances. J Electrochem Soc 161:H269–H275

    Article  CAS  Google Scholar 

  69. Kim WJ, Pradhan D, Min B, Sohn Y (2014) Adsorption/photocatalytic activity and fundamental natures of BiOCl and BiOCl x I1−x prepared in water and ethylene glycol environments, and Ag and Au-doping effects. Appl Catal B 147:711–725

    Article  CAS  Google Scholar 

  70. Xia J, Xu L, Zhang J, Yin S, Li H, Xu H, Di J (2013) Improved visible light photocatalytic properties of Fe/BiOCl microspheres synthesized via self-doped reactable ionic liquids. Cryst Eng Comm 15:10132–10141

    Article  CAS  Google Scholar 

  71. Yu J, Wei B, Zhu L, Gao H, Sun W, Xu L (2013) Flowerlike C-doped BiOCl nanostructures: facile wet chemical fabrication and enhanced UV photocatalytic properties. Appl Surf Sci 284:497–502

    Article  CAS  Google Scholar 

  72. Zhang X, Zhao L, Fan C, Liang Z, Han P (2012) First-principles investigation of impurity concentration influence on bonding behavior, electronic structure and visible light absorption for Mn-doped BiOCl photocatalyst. Physica B 407:4416–4424

    Article  CAS  Google Scholar 

  73. Parea B, Sarwana B, Jonnalagadda SB (2011) Photocatalytic mineralization study of malachite green on the surface of Mn-doped BiOCl activated by visible light under ambient condition. Appl Surf Sci 258:247–253

    Article  CAS  Google Scholar 

  74. Lin H, Ding L, Pei Z, Zhou Y, Long J, Deng W, Wang X (2014) Au deposited BiOCl with different facets: on determination of the facet-induced transfer preference of charge carriers and the different plasmonic activity. Appl Catal B 160–161:98–105

    Article  CAS  Google Scholar 

  75. Gao Y, Wang L, Li Z, Li C, Cao X, Zhou A, Hu Q (2014) Microwave-assisted synthesis of flower-like Ag-BiOCl nanocomposite with enhanced visible-light photocatalytic activity. Mater Lett 136:295–297

    Article  CAS  Google Scholar 

  76. Hu J, Xu G, Wang J, Lv J, Zhang X, Zheng Z, Xie T, Wu Y (2014) Photocatalytic properties of Bi/BiOCl heterojunctions synthesized using an in-situ reduction method. New J Chem 38:4913–4921

    Article  CAS  Google Scholar 

  77. Yu Y, Cao C, Liu H, Li P, Wei F, Jiang Y, Song W (2014) A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. J Mater Chem A 2:1677–1681

    Article  CAS  Google Scholar 

  78. Lin H, Ding L, Pei Z, Zhou Y, Long J, Deng W, Wang X (2014) Au deposited BiOCl with different facets: on determination of the facet-induced transfer preference of charge carriers and the different plasmonic activity. Appl Catal B 160–161:98–105

    Article  CAS  Google Scholar 

  79. Zuo Y, Wang C, Sun Y, Cheng J (2015) Preparation and photocatalytic properties of BiOCl/Bi2MoO6 composite photocatalyst. Mater Lett 139:149–152

    Article  CAS  Google Scholar 

  80. Yue D, Chen D, Wang Z, Ding H, Zong R, Zhu Y (2014) Enhancement of visible photocatalytic performances of a Bi2MoO6–BiOCl nanocomposite with plate-on-plate heterojunction structure. Phys Chem Chem Phys 16:26314–26321

    Article  CAS  Google Scholar 

  81. Yang W, Wen Y, Zeng D, Wang Q, Chen R, Wang W, Shan B (2014) Interfacial charge transfer and enhanced photocatalytic performance for the heterojunction WO3/BiOCl: first-principles study. J Mater Chem A 2:20770–20775

    Article  CAS  Google Scholar 

  82. Li N, Jin Y, Hua X, Wang K, Xu K, Chen M, Teng F (2014) Uniform Fe2O3 nanocubes on BiOCl nanosheets and its improved photocatalytic activity. J Mol Catal A Chem 395:428–433

    Article  CAS  Google Scholar 

  83. Mao X, Fan C, Wang Y, Wang Y, Zhang X (2014) RhB-sensitized effect on the enhancement of photocatalytic activity of BiOCl toward bisphenol-A under visible light irradiation. Appl Surf Sci 317:517–525

    Article  CAS  Google Scholar 

  84. Shia S, Gondal MA, Rashid SG, Qic Q, Al-Saadid AA, Yamani ZH, Suia Y, Xue Q, Shena K (2014) Synthesis of g-C3N4/BiOCl x Br1−x hybrid photocatalysts and the photoactivity enhancement driven by visible light. Colloids Surf A 461:202–211

    Article  CAS  Google Scholar 

  85. Guerrero M, Altube A, García-Lecina E, Rossinyol E, Baró MD, Pellicer E, Sort J (2014) Facile in situ synthesis of BiOCl nanoplates stacked to highly porous TiO2: a synergistic combination for environmental remediation. ACS Appl Mater Interfaces 6:13994–14000

    Article  CAS  Google Scholar 

  86. Ao Y, Tang H, Wang P, Wang C (2014) Deposition of Ag@AgCl onto two dimensional square-like BiOCl nanoplates for high visible-light photocatalytic activity. Mater Lett 131:74–77

    Article  CAS  Google Scholar 

  87. Cheng J, Wang C, Cui Y, Sun Y, Zuo Y, Wang T (2014) Large improvement of visible-light driven photocatalytic property in AgCl nanoparticles modified black BiOCl microsphere. Mater Lett 127:28–31

    Article  CAS  Google Scholar 

  88. Huang Z, Song J, Pan L, Jia X, Li Z, Zou J, Zhangab X, Wangab L (2014) W18O49 nanowire alignments with a BiOCl shell as an efficient photocatalyst. Nanoscale 6:8865–9972

    Article  CAS  Google Scholar 

  89. Lu H, Xu L, Wei B, Zhang M, Gao H, Sun W (2014) Enhanced photosensitization process induced by the p–n junction of Bi2O2CO3/BiOCl heterojunctions on the degradation of rhodamine B. Appl Surf Sci 303:360–366

    Article  CAS  Google Scholar 

  90. Li N, Hua X, Wang K, Jin Y, Xu J, Chen M, Teng F (2014) In-situ synthesis of uniform Fe2O3/BiOCl p/n heterojunctions and improved photodegradation properties for mixture dyes. Dalton Trans 43:13742–13750

    Article  CAS  Google Scholar 

  91. Li G, Jiang B, Xiao S, Lian Z, Zhang D, Yu JC, Li H (2014) An efficient dye-sensitized BiOCl photocatalyst for air and water purification under visible light irradiation. Environ Sci Processes Impacts 16:1975–1980

    Article  CAS  Google Scholar 

  92. Tana C, Zhua G, Hojamberdiev M, Okada K, Liang J, Luo X, Liu P, Liu Y (2014) Co3O4 nanoparticles-loaded BiOCl nanoplates with the dominant{001} facets: efficient photodegradation of organic dyes under visible light. Appl Catal B 152–153:425–436

    Article  CAS  Google Scholar 

  93. Zhanga X, Guob T, Wanga X, Wanga Y, Fana C, Zhang H (2014) Facile composition-controlled preparation and photocatalytic application of BiOCl/Bi2O2CO3 nanosheets. Appl Catal B 150–151:486–495

    Article  CAS  Google Scholar 

  94. Tan C, Zhu G, Hojamberdiev M, Xu C, Liang J, Luo P, Liu Y (2013) Room temperature synthesis and photocatalytic activity of magnetically recoverable Fe3O4/BiOCl nanocomposite photocatalysts. J Clust Sci 24:1115–1126

    Article  CAS  Google Scholar 

  95. Zhang J, Xia J, Yin S, Li H, Xu H, He M, Huang L, Zhang Q (2013) Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids. Colloids Surf A 420:89–95

    Article  CAS  Google Scholar 

  96. Xiao X, Hao R, Liang M, Zuo X, Nan J, Li L, Zhang W (2012) One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A. J Hazard Mater 233–234:122–130

    Article  CAS  Google Scholar 

  97. Cao J, Xu B, Lin H, Luo B, Chen S (2012) Novel Bi2S3-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B. Catal Commun 26:204–208

    Article  CAS  Google Scholar 

  98. Cheng H, Huang B, Qin X, Zhanga X, Daib Y (2012) A controlled anion exchange strategy to synthesize Bi2S3 nanocrystals/BiOCl hybrid architectures with efficient visible light photoactivity. Chem Commun 48:97–99

    Article  CAS  Google Scholar 

  99. Zhu G, Hojamberdiev M, Katsumata K, Matsushita N, Okada K, Liu P, Zhou J, Liu Y (2014) Synthesis of heterostructured In2O3/BiOCl powders and their visible-light-driven photocatalytic activity for the degradation of rhodamine B. Adv Powder Technol 25:1292–1303

    Article  CAS  Google Scholar 

  100. Chai SY, Kim YJ, Jung MH, Chakraborty AK, Jung D, Lee WI (2009) Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J Catal 262:144–149

    Article  CAS  Google Scholar 

  101. Gao B, Chakraborty AK, Yang JM, Lee WI (2010) Visible-light photocatalytic activity of BiOCl/Bi3O4Cl nanocomposites. Bull Korean Chem Soc 31:1941–1944

    Article  CAS  Google Scholar 

  102. Chakraborty AK, Rawal SB, Han SY, Chai SY, Lee WI (2011) Enhancement of visible-light photocatalytic efficiency of BiOCl/Bi2O3 by surface modification with WO3. Appl Catal A 407:217–223

    Article  CAS  Google Scholar 

  103. Lin XP, Huang T, Huang FQ, Wang WD, Shi JL (2006) Photocatalytic activity of a bi-based oxychloride Bi3O4Cl. J Phys Chem B 110:24629–24634

    Article  CAS  Google Scholar 

  104. Kwon YT, Song KY, Lee WI, Choi GJ, Do YR (2000) Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. J Catal 191:192–199

    Article  CAS  Google Scholar 

  105. Chakraborty AK, Chai SY, Lee WI (2008) Photocatalytic behavior of WO3/TiO2 in decomposing volatile aldehydes. Bull Korean Chem Soc 29:494–496

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Center for Artificial Photosynthesis (KCAP) funded by the Minister of Science, ICT and Future Planning (MSIP) through the National Research Foundation (NRF) of Korea (2009-0093884), and Basic Science Research Program through NRF funded by the Ministry of Education (NRF-2015R1D1A1A01057390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan In Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bera, S., Lee, W.I. (2016). Formation of BiOCl/Bi2O3 and Related Materials for Efficient Visible-Light Photocatalysis. In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_23

Download citation

Publish with us

Policies and ethics