Skip to main content

Synthesis and Performance Enhancement for Bi2WO6 as High-Activity Visible-Light-Driven Photocatalysts

  • Chapter
  • First Online:
Nanostructured Photocatalysts

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Bi2WO6 materials exhibit excellent visible-light photocatalytic activity due to the narrow band gap and special layered structure. This chapter summarizes the research achievements of Bi2WO6 photocatalyst in recent years. The crystal form and the band structure of Bi2WO6 are shown in Sect. 21.2. Then, we introduce the synthesis methods and morphology of Bi2WO6 in Sect. 21.3. The photodegradation process and mechanism of Bi2WO6 is discussed in Sect. 21.4. In Sects. 21.521.8, we summarize the methods to enhance Bi2WO6 photocatalytic activity, namely photoelectrocatalytic oxidation, doping or substitution of Bi2WO6, surface hybridization with π-conjugated materials or construct heterojunctions, and form porous films. Finally, the development trend of Bi2WO6 photocatalyts is expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagirnyi V, Kirm M, Kotlov A, Lushchik A, Jönsson L (2003) Separation of excitonic and electron–hole processes in metal tungstates. J lumin 102:597–603

    Article  Google Scholar 

  2. Yu SH, Liu B, Mo MS, Huang JH, Liu XM, Qian YT (2003) General synthesis of single‐crystal tungstate nanorods/nanowires: a facile – low‐temperature solution approach. Adv Funct Mater 13:639–647

    Article  CAS  Google Scholar 

  3. Kudo A, Hijii S (1999) H_2 or O_2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s (2) configuration and d (0) transition metal ions. Chem Lett 1999:1103–1104

    Article  Google Scholar 

  4. Tang J, Zou Z, Ye J (2004) Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal Lett 92:53–56

    Article  CAS  Google Scholar 

  5. Ricote J, Pardo L, Castro A, Millan P (2001) Study of the process of mechanochemical activation to obtain Aurivillius oxides with n= 1. J Solid State Chem 160:54–61

    Article  CAS  Google Scholar 

  6. Fu H, Zhang L, Yao W, Zhu Y (2006) Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process. Appl Catal Environ 66:100–110

    Article  CAS  Google Scholar 

  7. Zhang C, Zhu Y (2005) Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem Mater 17:3537–3545

    Article  CAS  Google Scholar 

  8. Fu H, Pan C, Yao W, Zhu Y (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J Phys Chem B 109:22432–22439

    Article  CAS  Google Scholar 

  9. Shimodaira Y, Kato H, Kobayashi H, Kudo A (2006) Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J Phys Chem B 110:17790–17797

    Article  CAS  Google Scholar 

  10. Zhang L, Man Y, Zhu Y (2011) Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst. ACS Catalysis 1:841–848

    Article  CAS  Google Scholar 

  11. Xiao Q, Zhang J, Xiao C, Tan X (2008) Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation. Catal Comm 9:1247–1253

    Article  CAS  Google Scholar 

  12. Kato H, Kudo A (1998) New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett 295:487–492

    Article  CAS  Google Scholar 

  13. Tang J, Zou Z, Ye J (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible‐light irradiation. Angew Chem Int Ed 43:4463–4466

    Article  CAS  Google Scholar 

  14. Kudo A, Kato H, Nakagawa S (2000) Water splitting into H2 and O2 on new Sr2M2O7 (M= Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. J Phys Chem B 104:571–575

    Article  CAS  Google Scholar 

  15. Lei Z, You W, Liu M, Zhou G, Takata T, Hara M, Domen K, Li C (2003) Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem Commun 2142–2143

    Google Scholar 

  16. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121:11459–11467

    Article  CAS  Google Scholar 

  17. Yan Y, Wu Y, Yan Y, Guan W, Shi W (2013) Inorganic-salt-assisted morphological evolution and visible-light-driven photocatalytic performance of Bi2WO6 nanostructures. J Phys Chem C 117:20017–20028

    Article  CAS  Google Scholar 

  18. Cheng H, Huang B, Liu Y, Wang Z, Qin X, Zhang X, Dai Y (2012) An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chem Commun 48:9729–9731

    Article  CAS  Google Scholar 

  19. Amano F, Nogami K, Ohtani B (2009) Visible light-responsive bismuth tungstate photocatalysts: effects of hierarchical architecture on photocatalytic activity. J Phys Chem C 113:1536–1542

    Article  CAS  Google Scholar 

  20. Amano F, Nogami K, Tanaka M, Ohtani B (2010) Correlation between surface area and photocatalytic activity for acetaldehyde decomposition over bismuth tungstate particles with a hierarchical structure. Langmuir 26:7174–7180

    Article  CAS  Google Scholar 

  21. Amano F, Yamakata A, Nogami K, Osawa M, Ohtani B (2008) Visible light responsive pristine metal oxide photocatalyst: enhancement of activity by crystallization under hydrothermal treatment. J Am Chem Soc 130:17650–17651

    Article  CAS  Google Scholar 

  22. Chen C, Li X, Ma W, Zhao J, Hidaka H, Serpone N (2002) Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism. J Phys Chem B 106:318–324

    Article  CAS  Google Scholar 

  23. Wong C, Chu W (2003) The hydrogen peroxide-assisted photocatalytic degradation of alachlor in TiO2 suspensions. Environ Sci Technol 37:2310–2316

    Article  CAS  Google Scholar 

  24. Sheng J, Li X, Xu Y (2014) Generation of H2O2 and OH radicals on Bi2WO6 for phenol degradation under visible light. ACS Catalysis 4:732–737

    Article  CAS  Google Scholar 

  25. Christensen P, Curtis T, Egerton T, Kosa S, Tinlin J (2003) Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Appl Catal Environ 41:371–386

    Article  CAS  Google Scholar 

  26. Xu Y, He Y, Cao X, Zhong D, Jia J (2008) TiO2/Ti rotating disk photoelectrocatalytic (PEC) reactor: a combination of highly effective thin-film PEC and conventional PEC processes on a single electrode. Environ Sci Technol 42:2612–2617

    Article  CAS  Google Scholar 

  27. Muna GW, Tasheva N, Swain GM (2004) Electro-oxidation and amperometric detection of chlorinated phenols at boron-doped diamond electrodes: a comparison of microcrystalline and nanocrystalline thin films. Environ Sci Technol 38:3674–3682

    Article  CAS  Google Scholar 

  28. Vlyssides A, Barampouti EM, Mai S, Arapoglou D, Kotronarou A (2004) Degradation of methylparathion in aqueous solution by electrochemical oxidation. Environ Sci Technol 38:6125–6131

    Article  CAS  Google Scholar 

  29. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41

    Article  Google Scholar 

  30. Marselli B, Garcia-Gomez J, Michaud P-A, Rodrigo M, Comninellis C (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79–D83

    Article  CAS  Google Scholar 

  31. Caruso F, Möhwald H (1999) Protein multilayer formation on colloids through a stepwise self-assembly technique. J Am Chem Soc 121:6039–6046

    Article  CAS  Google Scholar 

  32. Zhao X, Xu T, Yao W, Zhang C, Zhu Y (2007) Photoelectrocatalytic degradation of 4-chlorophenol at Bi2WO6 nanoflake film electrode under visible light irradiation. Appl Catal Environ 72:92–97

    Article  CAS  Google Scholar 

  33. Zhao X, Zhu Y (2006) Synergetic degradation of rhodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis. Environ Sci Technol 40:3367–3372

    Article  CAS  Google Scholar 

  34. Balek V, Li D, Šubrt J, Večerníková E, Hishita S, Mitsuhashi T, Haneda H (2007) Characterization of nitrogen and fluorine co-doped titania photocatalyst: effect of temperature on microstructure and surface activity properties. J Phys Chem Solid 68:770–774

    Article  CAS  Google Scholar 

  35. Li D, Haneda H, Hishita S, Ohashi N, Labhsetwar NK (2005) Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J Fluorine Chem 126:69–77

    Article  CAS  Google Scholar 

  36. Xiang Q, Lv K, Yu J (2010) Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Appl Catal Environ 96:557–564

    Article  CAS  Google Scholar 

  37. Yu J, Xiang Q, Ran J, Mann S (2010) One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. CrystEngComm 12:872–879

    Article  CAS  Google Scholar 

  38. Yu JC, Yu J, Ho W, Jiang Z, Zhang L (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816

    Article  CAS  Google Scholar 

  39. Fu H, Zhang S, Xu T, Zhu Y, Chen J (2008) Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ Sci Technol 42:2085–2091

    Article  CAS  Google Scholar 

  40. Shi R, Huang G, Lin J, Zhu Y (2009) Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution. J Phys Chem C 113:19633–19638

    Article  CAS  Google Scholar 

  41. Huang H, Liu K, Chen K, Zhang Y, Zhang Y, Wang S (2014) Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J Phys Chem C 118:14379–14387

    Article  CAS  Google Scholar 

  42. Zhang L, Fu H, Zhang C, Zhu Y (2008) Effects of Ta5+ substitution on the structure and photocatalytic behavior of the Ca2Nb2O7 photocatalyst. J Phys Chem C 112:3126–3133

    Article  CAS  Google Scholar 

  43. Zhou L, Yu M, Yang J, Wang Y, Yu C (2010) Nanosheet-based Bi2Mo x W1− x O6 solid solutions with adjustable band gaps and enhanced visible-light-driven photocatalytic activities. J Phys Chem C 114:18812–18818

    Article  CAS  Google Scholar 

  44. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@ TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc 127:3928–3934

    Article  CAS  Google Scholar 

  45. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126:4943–4950

    Article  CAS  Google Scholar 

  46. Elder S, Cot F, Su Y, Heald S, Tyryshkin A, Bowman M, Gao Y, Joly A, Balmer M, Kolwaite AC (2000) The discovery and study of nanocrystalline TiO2-(MoO3) core-shell materials. J Am Chem Soc 122:5138–5146

    Article  CAS  Google Scholar 

  47. Tatsuma T, Saitoh S, Ngaotrakanwiwat P, Ohko Y, Fujishima A (2002) Energy storage of TiO2-WO3 photocatalysis systems in the gas phase. Langmuir 18:7777–7779

    Article  CAS  Google Scholar 

  48. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon‐nanotube–TiO2 composites. Adv Mater 21:2233–2239

    Article  CAS  Google Scholar 

  49. Fu H, Xu T, Zhu S, Zhu Y (2008) Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60. Environ Sci Technol 42:8064–8069

    Article  CAS  Google Scholar 

  50. Zhang L, Wang Y, Xu T, Zhu S, Zhu Y (2010) Surface hybridization effect of C60 molecules on TiO2 and enhancement of the photocatalytic activity. J Mol Catal A Chem 331:7–14

    Article  CAS  Google Scholar 

  51. Zhu S, Xu T, Fu H, Zhao J, Zhu Y (2007) Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ Sci Technol 41:6234–6239

    Article  CAS  Google Scholar 

  52. Zhang H, Zong R, Zhao J, Zhu Y (2008) Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ Sci Technol 42:3803–3807

    Article  CAS  Google Scholar 

  53. Zhang H, Zong R, Zhu Y (2009) Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline. J Phys Chem C 113:4605–4611

    Article  CAS  Google Scholar 

  54. Zhang L, Cheng H, Zong R, Zhu Y (2009) Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. J Phys Chem C 113:2368–2374

    Article  Google Scholar 

  55. Zhang LW, Fu HB, Zhu YF (2008) Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite‐like carbon. Adv Funct Mater 18:2180–2189

    Article  CAS  Google Scholar 

  56. Sun S, Wang W, Zhang L (2013) Bi2WO6 quantum dots decorated reduced graphene oxide: improved charge separation and enhanced photoconversion efficiency. J Phys Chem C 117:9113–9120

    Article  CAS  Google Scholar 

  57. Xu T, Zhang L, Cheng H, Zhu Y (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal Environ 101:382–387

    Article  CAS  Google Scholar 

  58. Yang J, Wang X, Zhao X, Dai J, Mo S (2015) Synthesis of uniform Bi2WO6-reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity. J Phys Chem C

    Google Scholar 

  59. Li M, Zhang L, Fan X, Zhou Y, Wu M, Shi J (2015) Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light. J Mater Chem A

    Google Scholar 

  60. Tian Y, Chang B, Lu J, Fu J, Xi F, Dong X (2013) Hydrothermal synthesis of graphitic carbon nitride–Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS Appl Mater Interfaces 5:7079–7085

    Article  CAS  Google Scholar 

  61. Wang Y, Bai X, Pan C, He J, Zhu Y (2012) Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J Mater Chem 22:11568–11573

    Article  CAS  Google Scholar 

  62. Tian J, Sang Y, Yu G, Jiang H, Mu X, Liu H (2013) A Bi2WO6‐based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near‐infrared irradiation. Adv Mater 25:5075–5080

    Article  CAS  Google Scholar 

  63. Zhang Z, Wang W, Wang L, Sun S (2012) Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6. ACS Appl Mater Interfaces 4:593–597

    Article  CAS  Google Scholar 

  64. Hu J, Cheng W, Huang S, Wu D, Xie Z (2006) First-principles modeling of nonlinear optical properties of C3N4 polymorphs. Appl Phys Lett 89:261117–261117-3

    Google Scholar 

  65. Yan S, Lv S, Li Z, Zou Z (2010) Organic–inorganic composite photocatalyst of gC3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491

    Article  CAS  Google Scholar 

  66. Ren J, Wang W, Sun S, Zhang L, Chang J (2009) Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Appl Catal Environ 92:50–55

    Article  CAS  Google Scholar 

  67. Xu J, Wang W, Gao E, Ren J, Wang L (2011) Bi2WO6/CuO: a novel coupled system with enhanced photocatalytic activity by Fenton-like synergistic effect. Catal Comm 12:834–838

    Article  CAS  Google Scholar 

  68. Pan JH, Lee WI (2006) Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties. Chem Mater 18:847–853

    Article  CAS  Google Scholar 

  69. Zhang L, Zhu Y, He Y, Li W, Sun H (2003) Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel. Appl Catal Environ 40:287–292

    Article  CAS  Google Scholar 

  70. Zukalova M, Zukal A, Kavan L, Nazeeruddin MK, Liska P, Grätzel M (2005) Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett 5:1789–1792

    Article  CAS  Google Scholar 

  71. Orilall MC, Abrams NM, Lee J, DiSalvo FJ, Wiesner U (2008) Highly crystalline inverse opal transition metal oxides via a combined assembly of soft and hard chemistries. J Am Chem Soc 130:8882–8883

    Article  CAS  Google Scholar 

  72. Zhang LW, Wang YJ, Cheng HY, Yao WQ, Zhu YF (2009) Synthesis of porous Bi2WO6 thin films as efficient visible‐light‐active photocatalysts. Adv Mater 21:1286–1290

    Article  CAS  Google Scholar 

  73. Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble‐metal nanoparticles. Angew Chem Int Ed 43:597–601

    Article  Google Scholar 

  74. Sun X, Li Y (2004) Ga2O3 and GaN semiconductor hollow spheres. Angew Chem Int Ed 43:3827–3831

    Article  CAS  Google Scholar 

  75. Jiang P, Bertone J, Hwang K, Colvin V (1999) Single-crystal colloidal multilayers of controlled thickness. Chem Mater 11:2132–2140

    Article  CAS  Google Scholar 

  76. Yang B, Zhang Y, Drabarek E, Barnes PR, Luca V (2007) Enhanced photoelectrochemical activity of sol-gel tungsten trioxide films through textural control. Chem Mater 19:5664–5672

    Article  CAS  Google Scholar 

  77. Sun S, Wang W, Xu J, Wang L, Zhang Z (2011) Highly efficient photocatalytic oxidation of phenol over ordered mesoporous Bi2WO6. Appl Catal Environ 106:559–564

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfa Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wei, Z., Zhu, Y. (2016). Synthesis and Performance Enhancement for Bi2WO6 as High-Activity Visible-Light-Driven Photocatalysts. In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_21

Download citation

Publish with us

Policies and ethics