Skip to main content

Novel Titanium Oxide Materials Synthesized by Solvothermal and Supercritical Fluid Processes

  • Chapter
  • First Online:
  • 2955 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Titania (TiO2) represents the most widely used semiconductor photocatalysts and photovoltaics (Bach et al., Nature 395:583–585, 1998; Chen et al., Chem Soc Rev 39:4206–4219, 2010), and its performances heavily governed by the physical and chemical properties such as surface area, particle size, micro/nanostructures, exposed crystal planes, and surface chemistry (Dai et al., Nano Lett 9:2455–2459, 2009; Feng et al., Nano Lett 8:3781–3786, 2008; Liu et al., J Am Chem Soc 131:12868–12869, 2009; Yang et al., J Am Chem Soc 131:4078–4083, 2009). The structural parameters depend on the control of hydrolysis, condensation and crystallization of TiO2 precursors by the different synthesis methods. The aim of this chapter is to present the solvothermal and supercritical fluid methods, and to examine the influence of synthesis process on material structure and performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585

    Article  CAS  Google Scholar 

  2. Chen C, Ma W, Zhao J (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219

    Article  CAS  Google Scholar 

  3. Dai Y, Cobley CM, Zeng J, Sun Y, Xia Y (2009) Synthesis of anatase TiO2 nanocrystals with exposed {001} facets. Nano Lett 9:2455–2459

    Article  CAS  Google Scholar 

  4. Feng X, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA (2008) Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett 8:3781–3786

    Article  CAS  Google Scholar 

  5. Liu G, Yang HG, Wang X, Cheng L, Pan J, Lu GQ, Cheng H-M (2009) Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J Am Chem Soc 131:12868–12869

    Article  CAS  Google Scholar 

  6. Yang HG, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Zou J, Cheng HM, Lu GQ (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc 131:4078–4083

    Article  CAS  Google Scholar 

  7. Zhu J, Yang J, Bian ZF, Ren H, Liu YM, Cao Y, Li HX, He HY, Fan KN (2007) Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol-gel reaction of TiC14 and benzyl alcohol. Appl Catal B 76:82–91

    Article  CAS  Google Scholar 

  8. Zhu H, Bian Z-F, Ren H, Liu Y-M, Cao Y, Li H-X, Dai W-L, He H-Y, Fan K-N (2007) An integrated low temperature approach to highly photoactive nanocrystalline mesostructured titania. Catal Commun 8:971–976

    Article  CAS  Google Scholar 

  9. Zhu J, Wang S, Bian Z, Xie S, Cai C, Wang J, Yang H, Li H (2010) Solvothermally controllable synthesis of anatase TiO2 nanocrystals with dominant {001} facets and enhanced photocatalytic activity. CrystEngComm 12:2219–2224

    Article  CAS  Google Scholar 

  10. Caruso RA, Schattka JH, Greiner A (2001) Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers. Adv Mater 13:1577–1579

    Article  CAS  Google Scholar 

  11. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Colloidosomes: selectively permeable capsules composed of colloidal particles. Science 298:1006–1009

    Article  CAS  Google Scholar 

  12. Mitchell DT, Lee SB, Trofin L, Li NC, Nevanen TK, Soderlund H, Martin CR (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124:11864–11865

    Article  CAS  Google Scholar 

  13. Qi LM, Li J, Ma JM (2002) Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Adv Mater 14:300–303

    Article  CAS  Google Scholar 

  14. Afanasiev P, Bezverkhy I (2003) Genesis of vesicle-like and tubular morphologies in inorganic precipitates: amorphous Mo oxysulfides. J Phys Chem B 107:2678–2683

    Article  CAS  Google Scholar 

  15. Guo CW, Cao Y, Xie SH, Dai WL, Fan KN (2003) Fabrication of mesoporous core-shell structured titania microspheres with hollow interiors. Chem Commun 6:700–701

    Google Scholar 

  16. Yang HG, Zeng HC (2004) Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J Phys Chem B 108:3492–3495

    Article  CAS  Google Scholar 

  17. Yin YD, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714

    Article  CAS  Google Scholar 

  18. Li H, Bian Z, Zhu J, Zhang D, Li G, Huo Y, Li H, Lu Y (2007) Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407

    Article  CAS  Google Scholar 

  19. Lv F, Xiao S, Zhu J, Li H (2014) Dye-sensitized solar cells with enhanced efficiency using hierarchical TiO2 spheres as a scattering layer. RSC Adv 4:36206–36211

    Article  CAS  Google Scholar 

  20. Gomathi A, Vivekchand SRC, Govindaraj A, Rao CNR (2005) Chemically bonded ceramic oxide coatings on carbon nanotubes and inorganic nanowires. Adv Mater 17:2757–2761

    Article  CAS  Google Scholar 

  21. Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold JA, Choi K-S, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359

    Article  CAS  Google Scholar 

  22. Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K, Yanagida S (2005) Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Phys Chem Chem Phys 7:4157–4163

    Article  CAS  Google Scholar 

  23. Tachikawa T, Tojo S, Fujitsuka M, Sekino T, Majima T (2006) Photoinduced charge separation in titania nanotubes. J Phys Chem B 110:14055–14059

    Article  CAS  Google Scholar 

  24. Tsai CC, Teng HS (2004) Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem Mater 16:4352–4358

    Article  CAS  Google Scholar 

  25. Chanmanee W, Watcharenwong A, Chenthamarakshan CR, Kajitvichyanukul P, de Tacconi NR, Rajeshwar K (2008) Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization. J Am Chem Soc 130:965–974

    Article  CAS  Google Scholar 

  26. Bian Z, Zhu J, Cao F, Huo Y, Lu Y, Li H (2010) Solvothermal synthesis of well-defined TiO2 mesoporous nanotubes with enhanced photocatalytic activity. Chem Commun 46:8451–8453

    Article  CAS  Google Scholar 

  27. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  28. Hong Z, Wei M, Lan T, Jiang L, Cao G (2012) Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties. Energy Environ Sci 5:5408–5413

    Article  CAS  Google Scholar 

  29. Jiao W, Wang L, Liu G, Lu GQ, Cheng H-M (2012) Hollow anatase TiO2 single crystals and mesocrystals with dominant {101} facets for improved photocatalysis activity and tuned reaction preference. ACS Catal 2:1854–1859

    Article  CAS  Google Scholar 

  30. Bian Z, Zhu J, Wen J, Cao F, Huo Y, Qian X, Cao Y, Shen M, Li H, Lu Y (2011) Single-crystal-like titania mesocages. Angew Chem Int Ed 50:1105–1108

    Article  CAS  Google Scholar 

  31. Zhu J, Wang J, Lv F, Xiao S, Nuckolls C, Li H (2013) Synthesis and self-assembly of photonic materials from nanocrystalline titania sheets. J Am Chem Soc 135:4719–4721

    Article  CAS  Google Scholar 

  32. Zhu J, Ren J, Huo Y, Bian Z, Li H (2007) Nanocrystalline Fe/TiO2 visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol-gel route. J Phys Chem C 111:18965–18969

    Article  CAS  Google Scholar 

  33. Bian Z, Ren J, Zhu J, Wang S, Lu Y, Li H (2009) Self-assembly of Bi x Ti1−x O2 visible photocatalyst with core-shell structure and enhanced activity. Appl Catal B 89:577–582

    Article  CAS  Google Scholar 

  34. Liu B, Zeng HC (2004) Fabrication of ZnO “dandelions” via a modified Kirkendall process. J Am Chem Soc 126:16744–16746

    Article  CAS  Google Scholar 

  35. Bian Z, Zhu J, Cao F, Lu Y, Li H (2009) In situ encapsulation of Au nanoparticles in mesoporous core-shell TiO2 microspheres with enhanced activity and durability. Chem Commun 25:3789–3791

    Google Scholar 

  36. Zhu J, Wang S, Wang J, Zhang D, Li H (2011) Highly active and durable Bi2O3/TiO2 visible photocatalyst in flower-like spheres with surface-enriched Bi2O3 quantum dots. Appl Catal B 102:120–125

    Article  CAS  Google Scholar 

  37. Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  38. Choi H, Antoniou MG, Pelaez M et al (2007) Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Technol 41:7530–7535

    Article  CAS  Google Scholar 

  39. Chen C, Bai H, Chang C (2007) Effect of plasma processing gas composition on the nitrogen-doping status and visible light photocatalysis of TiO2. J Phys Chem C 111:15228–15235

    Article  CAS  Google Scholar 

  40. Kitano M, Funatsu K, Matsuoka M et al (2006) Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J Phys Chem B 110:25266–25727

    Article  CAS  Google Scholar 

  41. Tian FH, Liu CB (2006) DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2. J Phys Chem B 110:17866–17871

    Article  CAS  Google Scholar 

  42. Wang J, Zhang Q, Yin S et al (2007) Raman spectroscopic analysis of sulphur-doped TiO2 by co-grinding with TiS2. J Phys Chem Solids 68:189–192

    Article  CAS  Google Scholar 

  43. Ho W, Yu JC, Lee S (2006) Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J Solid State Chem 179:1171–1176

    Article  CAS  Google Scholar 

  44. Park JS, Choi W (2004) Enhanced remote photocatalytic oxidation on surface-fluorinated TiO2. Langmuir 20:11523–11527

    Article  CAS  Google Scholar 

  45. Yu JC, Yu JG, Ho WK et al (2002) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816

    Article  CAS  Google Scholar 

  46. Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28

    Article  CAS  Google Scholar 

  47. Ren WJ, Ai ZH, Jia FL et al (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B 69:138–144

    Article  CAS  Google Scholar 

  48. Wu GS, Nishikawa T, Ohtani B et al (2007) Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response. Chem Mater 19:4530–4537

    Article  CAS  Google Scholar 

  49. Bacsa R, Kiwi J, Ohno T et al (2005) Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. J Phys Chem B 109:5994–6003

    Article  CAS  Google Scholar 

  50. Chen XF, Wang XC, Hou YD et al (2008) The effect of postnitridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible light irradiation. J Catal 255:59–67

    Article  CAS  Google Scholar 

  51. Guo Y, Zhang XW, Han GR (2006) Investigation of structure and properties of N-doped TiO2 thin films grown by APCVD. Mater Sci Eng B 135:83–87

    Article  CAS  Google Scholar 

  52. Li D, Haneda H, Hishita S et al (2005) Visible-light-driven N-F-codoped TiO2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization. Chem Mater 17:2588–2595

    Article  CAS  Google Scholar 

  53. Li D, Haneda H, Hishita S, Ohashi N et al (2005) Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J Fluorine Chem 126:69–77

    Article  CAS  Google Scholar 

  54. Borras A, Lopez C, Rico V et al (2007) Effect of visible and UV illumination on the water contact angle of TiO2 thin films with incorporated nitrogen. J Phys Chem C 111:1801–1808

    Article  CAS  Google Scholar 

  55. Watanabe K, Menzel D, Nilius N et al (2006) Photochemistry on metal nanoparticles. Chem Rev 106:4301–4320

    Article  CAS  Google Scholar 

  56. Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2- new photochemical processes. Chem Rev 106:4428–4453

    Article  CAS  Google Scholar 

  57. Gourinchas-Courtecuisse V, Bocquet F, Chhor K et al (1996) Modeling of a continuous reactor for TiO2 powder synthesis in a supercritical fluid - experimental validation. J Supercritical Fluids 9:222–226

    Article  Google Scholar 

  58. An GM, Ma WH, Sun ZY et al (2007) Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45:1795–1801

    Article  CAS  Google Scholar 

  59. Aymonier C, Loppinet-Serani A, Reveron H et al (2006) Review of supercritical fluids in inorganic materials science. J Supercritical Fluids 38:242–251

    Article  CAS  Google Scholar 

  60. Li HX, Li JX, Huo YN (2006) Highly active TiO2N photocatalysts prepared by treating precursors in NH3/EtOH fluid under supercritical conditions. J Phys Chem B 110:1559–1565

    Article  CAS  Google Scholar 

  61. Li HX, Zhang XY, Huo YN et al (2007) Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. Environ Sci Technol 41:4410–4414

    Article  CAS  Google Scholar 

  62. Huo YN, Jin Y, Zhu J et al (2009) Highly active TiO2−xy N x F y visible photocatalyst prepared under supercritical conditions in NH4F/EtOH fluid. Appl Catal B 89:543–550

    Article  CAS  Google Scholar 

  63. Wu XH, Ding XB, Qin W et al (2006) Enhanced photo-catalytic activity of TiO2 films with doped La prepared by micro-plasma oxidation method. J Hazard Mater 137:192–197

    Article  CAS  Google Scholar 

  64. Yuan S, Sheng QR, Zhang JL et al (2005) Synthesis of La3+ doped mesoporous titania with highly crystallized walls. Microporous Mesoporous Mater 79:93–99

    Article  CAS  Google Scholar 

  65. Huo YN, Zhu J, Li JX et al (2007) An active La/TiO2 photocatalyst prepared by ultrasonication-assisted sol-gel method followed by treatment under supercritical conditions. J Mol Catal A 278:237–243

    Article  CAS  Google Scholar 

  66. Huo YN, Zhang XY, Jin Y et al (2008) Highly active La2O3/Ti1−x B x O2 visible light photocatalysts prepared under supercritical conditions. Appl Catal B 83:78–84

    Article  CAS  Google Scholar 

  67. Yu J C, Wu L, Lin J et al (2003) Microemulsion-mediated solvothermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalyst. Chem Commun 13:1552–1553

    Google Scholar 

  68. Wu L, Yu JC, Fu XZ (2006) Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J Mol Catal A 244:25–32

    Article  CAS  Google Scholar 

  69. Huo YN, Yang XL, Zhu J et al (2011) Highly active and stable CdS-TiO2 visible photocatalyst prepared by in-situ sulfurization under supercritical conditions. Appl Catal B 106:69–75

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NFSC (21261140333, 21237003, 21407106, 21207091, 21522703, 21577092), Shanghai government (14ZR1430800, 13SG44, 15520711300), and Program for Changjiang Scholars and Innovative Research Team in University (IRT1269) and International Joint Laboratory on Resource Chemistry (IJLRC). Research is also supported by The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfeng Bian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bian, Z., Huo, Y., Li, H. (2016). Novel Titanium Oxide Materials Synthesized by Solvothermal and Supercritical Fluid Processes. In: Yamashita, H., Li, H. (eds) Nanostructured Photocatalysts. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26079-2_1

Download citation

Publish with us

Policies and ethics