Robotnik—Professional Service Robotics Applications with ROS

  • Roberto GuzmanEmail author
  • Roman Navarro
  • Marc Beneto
  • Daniel Carbonell
Part of the Studies in Computational Intelligence book series (SCI, volume 625)


This chapter summarizes our most relevant experiences in the use of ROS in the deployment of Real-World professional service robotics applications: a mobile robot for CBRN intervention missions, a tunnel inspection and surveillance robot, an upper body torso robot, an indoor healthcare logistic transport robot and a robot for precision viticulture. The chapter describes the mentioned projects and how ROS has been used in them. It focuses on the application development, on the ROS modules used and the ROS tools and components applied, and on the lessons learnt in the development process.


Professional service robotics applications with ROS Civil protection Agriculture robotics Logistic robotics Service robotics Autonomous robots Mobile robots Mobile manipulators AGVS UGVS 


  1. 1.
    M. Quigley, K. Conley, B.P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y. Ng, ROS: an open-source Robot Operating System, in ICRA Workshop on Open Source Software (2009)Google Scholar
  2. 2.
    ROS Conference. (2015)
  3. 3.
    R. Guzman, R. Navarro, J. Ferre, M. Moreno, RESCUER: development of a modular chemical, biological, radiological, and nuclear robot for intervention, sampling, and situation awareness. J. Field Robot. (2015). doi: 10.1002/rob.21588 Google Scholar
  4. 4.
  5. 5.
    Google Earth. (2013)
  6. 6.
    MoveIt! (2015)
  7. 7.
    Kinematics and Dynamics Library KDL. (2013)
  8. 8.
    Gazebo. (2015)
  9. 9.
    PointCloud Library. (2015)
  10. 10.
    multimaster\(\_\)fkie, retrieved 2015, from\(\_\)fkieGoogle Scholar
  11. 11.
    rosbridge\(\_\)suite, retrieved 2015, from\(\_\)suiteGoogle Scholar
  12. 12.
    BootStrap. (2015)
  13. 13.
  14. 14.
    URDF Unified Robot Description Format. (2015)
  15. 15.
    Robot Web Tools. (2015)
  16. 16.
    A. Linz, A. Ruckelshausen, E. Wunder, Autonomous service robots for orchards and vineyards: 3D simulation environment of multi sensor-based navigation and applications, in ICPA (2014)Google Scholar
  17. 17.
    A.G. Sick, NAV200 Operating Instructions. Accessed 12 Feb 2007
  18. 18.
    M. Bergerman, S.M. Maeta, J. Zhang, G.M. Freitas, B. Hamner, S. Singh, G. Kanto, Robot farmers: autonomous orchard vehicles help tree fruit production. IEEE Robot. Autom. Mag. 54–63Google Scholar
  19. 19.
    R.S. Nah, Y. Zhang, R. Pillat, ROS Support from MATLAB, Presentation in ROSCon Chicago, Sep 2014Google Scholar
  20. 20.
    S. Marden, M. Whitty, GPS-free localisation and navigation of an unmanned ground vehicle for yield forecasting in a vineyard, in Recent Advances in Agricultural Robotics, International workshop collocated with the 13th International Conference on Intelligent Autonomous Systems (IAS-13) Google Scholar
  21. 21.
    H. Mousazadeh, A technical review on navigation systems of agricultural autonomous off-road vehicles. J. Terramech. 50(3), 211–232 (2013). doi: 10.1016/j.jterra.2013.03.004. ISSN: 0022-4898Google Scholar
  22. 22.
    Swift Navigation. (2015)
  23. 23.
    ROS robot\(\_\)localizationGoogle Scholar
  24. 24.
    The Player Project. (2015)
  25. 25.
    OpenJAUS. (2015)
  26. 26.
    Coppelia Robotics V-REP. (2015)

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Roberto Guzman
    • 1
    Email author
  • Roman Navarro
    • 1
  • Marc Beneto
    • 1
  • Daniel Carbonell
    • 1
  1. 1.Robotnik AutomationSLLValenciaSpain

Personalised recommendations