Advertisement

Beneficial Impact of Cod Protein, l-Arginine, and Other Amino Acids on Insulin Sensitivity

  • Véronique Ouellet
  • S. John Weisnagel
  • Denis R. Joanisse
  • Charles Lavigne
  • Junio Dort
  • André Marette
  • Hélène JacquesEmail author
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

With the increasing rates of obesity, the prevalence of insulin resistance and its related diseases is likely to increase significantly in the coming years. It is therefore essential to find effective strategies to slow or prevent the progression of insulin resistance. Many intervention studies have shown that early intervention to improve insulin resistance successfully prevents progression to type 2 diabetes (T2D) (Crandall et al., Nat Clin Pract Endocrinol Metab 4:382–393, 2008). The composition of the diet is undoubtedly very important. While our understanding of the effects of fat and carbohydrates on glucose metabolism and insulin sensitivity has greatly increased over the past decades, the role of proteins and the mechanisms behind their effects are less well characterized. However, studies aiming to demystify their potential effects have shown promising results.

Keywords

Cod protein Insulin sensitivity Glucose metabolism Inflammation Lipid profile l-Arginine Taurine Branched-chain amino acids 

References

  1. 1.
    Crandall JP, Knowler WC, Kahn SE, et al. The prevention of type 2 diabetes. Nat Clin Pract Endocrinol Metab. 2008;4:382–93.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pot GK, Geelen A, Majsak-Newman G, et al. Increased consumption of fatty and lean fish reduces serum C-reactive protein concentrations but not inflammation markers in feces and in colonic biopsies. J Nutr. 2010;140:371–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Ouellet V, Marois J, Weisnagel SJ, Jacques H. Dietary cod protein improves insulin sensitivity in insulin-resistant men and women: a randomized controlled trial. Diabetes Care. 2007;30:2816–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Ouellet V, Weisnagel SJ, Marois J, et al. Dietary cod protein reduces plasma C-reactive protein in insulin-resistant men and women. J Nutr. 2008;138:2386–91.CrossRefPubMedGoogle Scholar
  5. 5.
    Vikoren LA, Nygard OK, Lied E, Rostrup E, Gudbrandsen OA. A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults. Br J Nutr. 2012;31:1–10.Google Scholar
  6. 6.
    Gunnarsdottir I, Tomasson H, Kiely M, et al. Inclusion of fish or fish oil in weight-loss diets for young adults: effects on blood lipids. Int J Obes (Lond). 2008;32:1105–12.CrossRefGoogle Scholar
  7. 7.
    Ramel A, Martinez JA, Kiely M, Bandarra NM, Thorsdottir I. Effects of weight loss and seafood consumption on inflammation parameters in young, overweight and obese European men and women during 8 weeks of energy restriction. Eur J Clin Nutr. 2010;64:987–93.CrossRefPubMedGoogle Scholar
  8. 8.
    Mouratoff GJ, Carroll NV, Scott EM. Diabetes mellitus in Athabaskan Indians in Alaska. Diabetes. 1969;18:29–32.CrossRefPubMedGoogle Scholar
  9. 9.
    Kromann N, Green A. Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Acta Med Scand. 1980;208:401–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Bang HO, Dyerberg J, Sinclair HM. The composition of the Eskimo food in north western Greenland. Am J Clin Nutr. 1980;33:2657–61.PubMedGoogle Scholar
  11. 11.
    Feskens EJ, Bowles CH, Kromhout D. Inverse association between fish intake and risk of glucose intolerance in normoglycemic elderly men and women. Diabetes Care. 1991;14:935–41.CrossRefPubMedGoogle Scholar
  12. 12.
    Feskens EJ, Virtanen SM, Rasanen L, et al. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care. 1995;18:1104–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Hartweg J, Perera R, Montori V, Dinneen S, Neil HA, Farmer A. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008;23:CD003205.Google Scholar
  14. 14.
    Zhang M, Picard-Deland E, Marette A. Fish and marine omega-3 polyunsaturated fatty acid consumption and incidence of type 2 diabetes: a systematic review and meta-analysis. Int J Endocrinol. 2013;2013:501015.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hurley C, Galibois I, Jacques H. Fasting and postprandial lipid and glucose metabolisms are modulated by dietary proteins and carbohydrates: role of plasma insulin concentrations. J Nutr Biochem. 1995;6:540–6.CrossRefGoogle Scholar
  16. 16.
    Lavigne C, Marette A, Jacques H. Cod and soy proteins compared with casein improve glucose tolerance and insulin sensitivity in rats. Am J Physiol Endocrinol Metab. 2000;278:E491–500.PubMedGoogle Scholar
  17. 17.
    Lavigne C, Tremblay F, Asselin G, Jacques H, Marette A. Prevention of skeletal muscle insulin resistance by dietary cod protein in high fat-fed rats. Am J Physiol Endocrinol Metab. 2001;281:E62–71.PubMedGoogle Scholar
  18. 18.
    Tremblay F, Lavigne C, Jacques H, Marette A. Dietary cod protein restores insulin-induced activation of phosphatidylinositol 3-kinase/Akt and GLUT4 translocation to the T-tubules in skeletal muscle of high-fat-fed obese rats. Diabetes. 2003;52:29–37.CrossRefPubMedGoogle Scholar
  19. 19.
    Soucy J, Leblanc J. The effects of a beef and fish meal on plasma amino acids, insulin and glucagon levels. Nutr Res. 1999;19:17–24.CrossRefGoogle Scholar
  20. 20.
    Talbot E, Weisnagel SJ, Marois J, Jacques H. Impact of cod protein on insulin sensitivity in women with polycystic ovary syndrome. Can J Diabetes. 2013;37:62.CrossRefGoogle Scholar
  21. 21.
    Lillioja S, Young AA, Culter CL, et al. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest. 1987;80:415–24.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gascon A, Jacques H, Moorjani S, Deshaies Y, Brun LD, Julien P. Plasma lipoprotein profile and lipolytic activities in response to the substitution of lean white fish for other animal protein sources in premenopausal women. Am J Clin Nutr. 1996;63:315–21.PubMedGoogle Scholar
  23. 23.
    Jacques H, Noreau L, Moorjani S. Effects on plasma lipoproteins and endogenous sex hormones of substituting lean white fish for other animal-protein sources in diets of postmenopausal women. Am J Clin Nutr. 1992;55:896–901.PubMedGoogle Scholar
  24. 24.
    Lacaille B, Julien P, Deshaies Y, Lavigne C, Brun LD, Jacques H. Responses of plasma lipoproteins and sex hormones to the consumption of lean fish incorporated in a prudent-type diet in normolipidemic men. J Am Coll Nutr. 2000;19:745–53.CrossRefPubMedGoogle Scholar
  25. 25.
    Beauchesne-Rondeau E, Gascon A, Bergeron J, Jacques H. Plasma lipids and lipoproteins in hypercholesterolemic men fed a lipid-lowering diet containing lean beef, lean fish, or poultry. Am J Clin Nutr. 2003;77:587–93.PubMedGoogle Scholar
  26. 26.
    Demonty I, Deshaies Y, Lamarche B, Jacques H. Cod protein lowers the hepatic triglyceride secretion rate in rats. J Nutr. 2003;133:1398–402.PubMedGoogle Scholar
  27. 27.
    Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189:19–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Bergeron N, Deshaies Y, Lavigne C, Jacques H. Interaction between dietary proteins and lipids in the regulation of serum and liver lipids in the rabbit. Effect of fish protein. Lipids. 1991;26:759–64.CrossRefPubMedGoogle Scholar
  29. 29.
    Zampelas A, Panagiotakos DB, Pitsavos C, et al. Fish consumption among healthy adults is associated with decreased levels of inflammatory markers related to cardiovascular disease: the ATTICA study. J Am Coll Cardiol. 2005;46:120–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Nakamura Y, Ueno Y, Tamaki S, et al. Fish consumption and early atherosclerosis in middle-aged men. Metabolism. 2007;56:1060–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Lopez-Garcia E, Schulze MB, Manson JE, et al. Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. J Nutr. 2004;134:1806–11.PubMedGoogle Scholar
  32. 32.
    Robinson LE, Mazurak VC. N-3 polyunsaturated fatty acids: relationship to inflammation in healthy adults and adults exhibiting features of metabolic syndrome. Lipids. 2013;48:319–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Pilon G, Ruzzin J, Rioux LE, et al. Differential effects of various fish proteins in altering body weight, adiposity, inflammatory status, and insulin sensitivity in high-fat-fed rats. Metabolism. 2011;60:1122–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Madani Z, Louchami K, Sener A, Malaisse WJ, Ait Yahia D. Dietary sardine protein lowers insulin resistance, leptin and TNF-alpha and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome. Int J Mol Med. 2012;29:311–8.PubMedGoogle Scholar
  35. 35.
    Rudkowska I, Marcotte B, Pilon G, Lavigne C, Marette A, Vohl MC. Fish nutrients decrease expression levels of tumor necrosis factor-alpha in cultured human macrophages. Physiol Genomics. 2010;40:189–94.CrossRefPubMedGoogle Scholar
  36. 36.
    Monti LD, Setola E, Lucotti PC, et al. Effect of a long-term oral l-arginine supplementation on glucose metabolism: a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2012;14:893–900.CrossRefPubMedGoogle Scholar
  37. 37.
    Piatti PM, Monti LD, Valsecchi G, et al. Long-term oral l-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care. 2001;24:875–80.CrossRefPubMedGoogle Scholar
  38. 38.
    Lucotti P, Setola E, Monti LD, et al. Beneficial effects of a long-term oral l-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab. 2006;291:E906–12.CrossRefPubMedGoogle Scholar
  39. 39.
    Lucotti P, Monti L, Setola E, et al. Oral l-arginine supplementation improves endothelial function and ameliorates insulin sensitivity and inflammation in cardiopathic nondiabetic patients after an aortocoronary bypass. Metabolism. 2009;58:1270–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Ito T, Schaffer SW, Azuma J. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids. 2012;42:1529–39.CrossRefPubMedGoogle Scholar
  41. 41.
    Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15:606–14.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lu J, Xie G, Jia W. Insulin resistance and the metabolism of branched-chain amino acids. Front Med. 2013;7:53–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Wells BJ, Mainous 3rd AG, Everett CJ. Association between dietary l-arginine and C-reactive protein. Nutrition. 2005;21:125–30.CrossRefPubMedGoogle Scholar
  44. 44.
    Blum A, Porat R, Rosenschein U, et al. Clinical and inflammatory effects of dietary l-arginine in patients with intractable angina pectoris. Am J Cardiol. 1999;83:1488–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Blum A, Hathaway L, Mincemoyer R, et al. Effects of oral l-arginine on endothelium-dependent vasodilation and markers of inflammation in healthy postmenopausal women. J Am Coll Cardiol. 2000;35:271–6.CrossRefPubMedGoogle Scholar
  46. 46.
    West SG, Likos-Krick A, Brown P, Mariotti F. Oral l-arginine improves hemodynamic responses to stress and reduces plasma homocysteine in hypercholesterolemic men. J Nutr. 2005;135:212–7.PubMedGoogle Scholar
  47. 47.
    Bogdanski P, Suliburska J, Grabanska K, et al. Effect of 3-month l-arginine supplementation on insulin resistance and tumor necrosis factor activity in patients with visceral obesity. Eur Rev Med Pharmacol Sci. 2012;16:816–23.PubMedGoogle Scholar
  48. 48.
    Rosa FT, Freitas EC, Deminice R, Jordao AA, Marchini JS. Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr. 2014;53:823–30.CrossRefPubMedGoogle Scholar
  49. 49.
    Schuller-Levis GB, Park E. Taurine: new implications for an old amino acid. FEMS Microbiol Lett. 2003;226:195–202.CrossRefPubMedGoogle Scholar
  50. 50.
    Dort J, Leblanc N, Maltais-Giguere J, Liaset B, Cote CH, Jacques H. Beneficial effects of cod protein on inflammatory cell accumulation in rat skeletal muscle after injury are driven by its high levels of l-arginine, glycine, taurine and lysine. PLoS One. 2013;8:e77274.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Popov D, Costache G, Georgescu A, Enache M. Beneficial effects of l-arginine supplementation in experimental hyperlipemia-hyperglycemia in the hamster. Cell Tissue Res. 2002;308:109–20.CrossRefPubMedGoogle Scholar
  52. 52.
    Kawano T, Nomura M, Nisikado A, Nakaya Y, Ito S. Supplementation of l-arginine improves hypertension and lipid metabolism but not insulin resistance in diabetic rats. Life Sci. 2003;73:3017–26.CrossRefPubMedGoogle Scholar
  53. 53.
    Miguez I, Marino G, Rodriguez B, Taboada C. Effects of dietary l-arginine supplementation on serum lipids and intestinal enzyme activities in diabetic rats. J Physiol Biochem. 2004;60:31–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Sugano M, Ishiwaki N, Nakashima K. Dietary protein-dependent modification of serum cholesterol level in rats. Significance of the l-arginine/lysine ratio. Ann Nutr Metab. 1984;28:192–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Gudbrandsen OA, Wergedahl H, Liaset B, Espe M, Berge RK. Dietary proteins with high isoflavone content or low methionine-glycine and lysine-l-arginine ratios are hypocholesterolaemic and lower the plasma homocysteine level in male Zucker fa/fa rats. Br J Nutr. 2005;94:321–30.CrossRefPubMedGoogle Scholar
  56. 56.
    Blum A, Cannon 3rd RO, Costello R, Schenke WH, Csako G. Endocrine and lipid effects of oral l-arginine treatment in healthy postmenopausal women. J Lab Clin Med. 2000;135:231–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Schulze F, Glos S, Petruschka D, et al. l-Arginine enhances the triglyceride-lowering effect of simvastatin in patients with elevated plasma triglycerides. Nutr Res. 2009;29:291–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Mizushima S, Moriguchi EH, Ishikawa P, et al. Fish intake and cardiovascular risk among middle-aged Japanese in Japan and Brazil. J Cardiovasc Risk. 1997;4:191–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Zhang M, Bi LF, Fang JH, et al. Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids. 2004;26:267–71.PubMedGoogle Scholar
  60. 60.
    Mizushima S, Nara Y, Sawamura M, Yamori Y. Effects of oral taurine supplementation on lipids and sympathetic nerve tone. Adv Exp Med Biol. 1996;403:615–22.CrossRefPubMedGoogle Scholar
  61. 61.
    Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M. Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci. 2010;17 Suppl 1:S6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Véronique Ouellet
    • 1
  • S. John Weisnagel
    • 2
  • Denis R. Joanisse
    • 3
  • Charles Lavigne
    • 4
  • Junio Dort
    • 5
  • André Marette
    • 6
  • Hélène Jacques
    • 1
    Email author
  1. 1.Department of Food and Nutrition Sciences/Institute of Nutrition and Functional FoodsLaval UniversityQuebecCanada
  2. 2.Diabetes Research UnitCRCHUQ, Laval University Hospital Centre (CHUL)QuebecCanada
  3. 3.Department of KinesiologyLaval UniversityQuebecCanada
  4. 4.Centre de Développement Bioalimentaire du QuébecLa PocatièreCanada
  5. 5.Department of Food and Nutrition SciencesLaval UniversityQuebecCanada
  6. 6.Quebec Heart and Lung Institute (CRIUCPQ)Laval UniversityQuebecCanada

Personalised recommendations