Skip to main content

AMP-Activated Protein Kinase and l-Arginine

  • Chapter
  • First Online:
L-Arginine in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

  • 1384 Accesses

Abstract

l-Arginine (ARG) is a cationic, conditionally essential amino acid that is involved in numerous physiological processes [Durante et al. (Clin Exp Pharmacol Physiol 34:906–911, 2007)]. It plays an important role not only in removing ammonia from the body but also in cell division, wound healing, immune function, and hormone release. l-Arginine also serves as the precursor for the synthesis of l-Ornithine, l-Proline, polyamines, agmantine, creatine, and protein [Barbul (JPEN J Parenter Enteral Nutr 10:227–238, 1986); Wu and Morris (Biochem J 336:1–17, 1998)] (Fig. 3.1). But more significantly, ARG is known to be the exclusive substrate for nitric oxide synthase (NOS), which utilizes ARG to generate the signaling molecule, nitric oxide (NO) [Palmer et al. (Nature 333:664–666, 1988)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Durante W, Johnson FK, Johnson RA. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol. 2007;34(9):906–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barbul A. l-Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr. 1986;10(2):227–38.

    Google Scholar 

  3. Wu G, Morris Jr SM. l-Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.

    Google Scholar 

  4. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature. 1988;333(6174):664–6.

    Google Scholar 

  5. Medlineplus. http://www.nlm.nih/gov/medlineplus/drugingo/natural/875.html. http://www.nlm.nih/gov/medlineplus/drugingo/natural/875.html; 2013.

  6. Baydoun AR, Emery PW, Pearson JD, Mann GE. Substrate-dependent regulation of intracellular amino acid concentrations in cultured bovine aortic endothelial cells. Biochem Biophys Res Commun. 1990;173(3):940–8.

    Article  CAS  PubMed  Google Scholar 

  7. Bednarz B, Jaxa-Chamiec T, Maciejewski P, et al. Efficacy and safety of oral l-arginine in acute myocardial infarction. Results of the multicenter, randomized, double-blind, placebo-controlled ARAMI pilot trial. Kardiol Pol. 2005;62(5):421–7.

    PubMed  Google Scholar 

  8. Kakoki M, Kim HS, Edgell CJ, Maeda N, Smithies O, Mattson DL. Amino acids as modulators of endothelium-derived nitric oxide. Am J Physiol Renal Physiol. 2006;291(2):F297–304.

    Article  CAS  PubMed  Google Scholar 

  9. Oka RK, Szuba A, Giacomini JC, Cooke JP. A pilot study of l-arginine supplementation on functional capacity in peripheral arterial disease. Vasc Med. 2005;10(4):265–74.

    Google Scholar 

  10. Pollock JS, Forstermann U, Mitchell JA, et al. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Natl Acad Sci USA. 1991;88(23):10480–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tangphao O, Grossmann M, Chalon S, Hoffman BB, Blaschke TF. Pharmacokinetics of intravenous and oral l-arginine in normal volunteers. Br J Clin Pharmacol. 1999;47(3):261–6.

    Google Scholar 

  12. Ceremuzynski L, Chamiec T, Herbaczynska-Cedro K. Effect of supplemental oral l-arginine on exercise capacity in patients with stable angina pectoris. Am J Cardiol. 1997;80(3):331–3.

    Google Scholar 

  13. Maxwell AJ, Anderson BE, Cooke JP. Nutritional therapy for peripheral arterial disease: a double-blind, placebo-controlled, randomized trial of HeartBar. Vasc Med. 2000;5(1):11–9.

    CAS  PubMed  Google Scholar 

  14. Bednarz B, Jaxa-Chamiec T, Gebalska J, Herbaczynska-Cedro K, Ceremuzynski L. l-arginine supplementation prolongs exercise capacity in congestive heart failure. Kardiol Pol. 2004;60(4):348–53.

    Google Scholar 

  15. Hambrecht R, Hilbrich L, Erbs S, et al. Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral l-arginine supplementation. J Am Coll Cardiol. 2000;35(3):706–13.

    Google Scholar 

  16. Rodriguez PC, Quiceno DG, Ochoa AC. l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 2007;109(4):1568–73.

    Google Scholar 

  17. Shang HF, Wang YY, Lai YN, Chiu WC, Yeh SL. Effects of l-arginine supplementation on mucosal immunity in rats with septic peritonitis. Clin Nutr. 2004;23(4):561–9.

    Google Scholar 

  18. Zhu H, Liu Y, Xie X, Huang J, Hou Y. Effect of l-arginine on intestinal mucosal immune barrier function in weaned pigs after Escherichia coli LPS challenge. Innate Immun. 2012;19:242–52.

    Google Scholar 

  19. Zhou M, Martindale RG. l-Arginine in the critical care setting. J Nutr. 2007;137(6 Suppl 2):1687S–92S.

    Google Scholar 

  20. Raghupathy R, Billett HH. Promising therapies in sickle cell disease. Cardiovasc Hematol Disord Drug Targets. 2009;9(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  21. Chen J, Kuhlencordt P, Urano F, Ichinose H, Astern J, Huang PL. Effects of chronic treatment with l-arginine on atherosclerosis in apoE knockout and apoE/inducible NO synthase double-knockout mice. Arterioscler Thromb Vasc Biol. 2003;23(1):97–103.

    Google Scholar 

  22. Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP. l-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation. 2007;116(2):188–95.

    Google Scholar 

  23. Shin S, Mohan S, Fung HL. Intracellular l-arginine concentration does not determine NO production in endothelial cells: implications on the “l-arginine paradox”. Biochem Biophys Res Commun. 2011;414(4):660–3.

    Google Scholar 

  24. Stroes E, Hijmering M, van Zandvoort M, Wever R, Rabelink TJ, van Faassen EE. Origin of superoxide production by endothelial nitric oxide synthase. FEBS Lett. 1998;438(3):161–4.

    Article  CAS  PubMed  Google Scholar 

  25. Miller RT, Martasek P, Roman LJ, Nishimura JS, Masters BS. Involvement of the reductase domain of neuronal nitric oxide synthase in superoxide anion production. Biochemistry. 1997;36(49):15277–84.

    Article  CAS  PubMed  Google Scholar 

  26. Stroes E, Kastelein J, Cosentino F, et al. Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest. 1997;99(1):41–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mohan S, Wu CC, Shin S, Fung HL. Continuous exposure to l-arginine induces oxidative stress and physiological tolerance in cultured human endothelial cells. Amino Acids. 2012;43(3):1179–88.

    Google Scholar 

  28. Chen J, Kuhlencordt P, Urano F, Ichinose H, Astern J, Huang PL. Effects of chronic treatment with l-arginine on atherosclerosis in apoE knockout and apoE/inducible NO synthase double-knockout mice. Arterioscler Thromb Vasc Biol. 2003;23(1):97–103.

    Google Scholar 

  29. Huang HS, Ma MC, Chen J. Chronic l-arginine administration increases oxidative and nitrosative stress in rat hyperoxaluric kidneys and excessive crystal deposition. Am J Physiol Renal Physiol. 2008;295(2):F388–96.

    Google Scholar 

  30. Simonet S, Rupin A, Badier-Commander C, Coumailleau S, Behr-Roussel D, Verbeuren TJ. Evidence for superoxide anion generation in aortas of cholesterol-fed rabbits treated with l-arginine. Eur J Pharmacol. 2004;492(2–3):211–6.

    Google Scholar 

  31. Bitar MS, Wahid S, Mustafa S, Al-Saleh E, Dhaunsi GS, Al-Mulla F. Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes. Eur J Pharmacol. 2005;511(1):53–64.

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt TS, Alp NJ. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond). 2007;113(2):47–63.

    Article  CAS  Google Scholar 

  33. Veresh Z, Racz A, Lotz G, Koller A. ADMA impairs nitric oxide-mediated arteriolar function due to increased superoxide production by angiotensin II-NAD(P)H oxidase pathway. Hypertension. 2008;52(5):960–6.

    Article  CAS  PubMed  Google Scholar 

  34. Pieper GM, Jordan M, Dondlinger LA, Adams MB, Roza AM. Peroxidative stress in diabetic blood vessels. Reversal by pancreatic islet transplantation. Diabetes. 1995;44(8):884–9.

    Article  CAS  PubMed  Google Scholar 

  35. Shinozaki K, Nishio Y, Okamura T, et al. Oral administration of tetrahydrobiopterin prevents endothelial dysfunction and vascular oxidative stress in the aortas of insulin-resistant rats. Circ Res. 2000;87(7):566–73.

    Article  CAS  PubMed  Google Scholar 

  36. Tiefenbacher CP, Chilian WM, Mitchell M, DeFily DV. Restoration of endothelium-dependent vasodilation after reperfusion injury by tetrahydrobiopterin. Circulation. 1996;94(6):1423–9.

    Article  CAS  PubMed  Google Scholar 

  37. Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111(8):1201–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wolff DJ, Datto GA, Samatovicz RA. The dual mode of inhibition of calmodulin-dependent nitric-oxide synthase by antifungal imidazole agents. J Biol Chem. 1993;268(13):9430–6.

    CAS  PubMed  Google Scholar 

  39. Yoshida A, Pozdnyakov N, Dang L, Orselli SM, Reddy VN, Sitaramayya A. Nitric oxide synthesis in retinal photoreceptor cells. Vis Neurosci. 1995;12(3):493–500.

    Article  CAS  PubMed  Google Scholar 

  40. Gross SS, Jaffe EA, Levi R, Kilbourn RG. Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by l-arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochem Biophys Res Commun. 1991;178(3):823–9.

    Google Scholar 

  41. Kwon NS, Nathan CF, Stuehr DJ. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem. 1989;264(34):20496–501.

    CAS  PubMed  Google Scholar 

  42. Tayeh MA, Marletta MA. Macrophage oxidation of l-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989;264(33):19654–8.

    Google Scholar 

  43. Mohan S, Patel H, Bolinaga J, Soekamto N, Achu L, Teklemariam K. Dihydrobiopterin (BH2): key determinant in influencing l-arginine mediated endothelial tolerance and dysfunction. Am J Biochem Biotechnol. 2012;8(2):54–62.

    Google Scholar 

  44. Mohan S, Patel H, Bolinaga J, Soekamto N. AMP-activated protein kinase regulates l-arginine mediated cellular responses. Nutr Metab. 2013;10(1):40.

    Google Scholar 

  45. de Castro Barbosa T, Jiang LQ, Zierath JR, Nunes MT. l-Arginine enhances glucose and lipid metabolism in rat L6 myotubes via the NO/ c-GMP pathway. Metabolism. 2013;62(1):79–89.

    Google Scholar 

  46. Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol. 2001;91(3):1017–28.

    CAS  PubMed  Google Scholar 

  47. Zhang J, Xie Z, Dong Y, Wang S, Liu C, Zou MH. Identification of nitric oxide as an endogenous activator of the AMP-activated protein kinase in vascular endothelial cells. J Biol Chem. 2008;283(41):27452–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mount PF, Lane N, Venkatesan S, et al. Bradykinin stimulates endothelial cell fatty acid oxidation by CaMKK-dependent activation of AMPK. Atherosclerosis. 2008;200(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  49. Stahmann N, Woods A, Carling D, Heller R. Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol Cell Biol. 2006;26(16):5933–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wohlfart P, Malinski T, Ruetten H, et al. Release of nitric oxide from endothelial cells stimulated by YC-1, an activator of soluble guanylyl cyclase. Br J Pharmacol. 1999;128(6):1316–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hwang TL, Hung HW, Kao SH, Teng CM, Wu CC, Cheng SJ. Soluble guanylyl cyclase activator YC-1 inhibits human neutrophil functions through a cGMP-independent but cAMP-dependent pathway. Mol Pharmacol. 2003;64(6):1419–27.

    Article  CAS  PubMed  Google Scholar 

  52. Chen H, Levine YC, Golan DE, Michel T, Lin AJ. Atrial natriuretic peptide-initiated cGMP pathways regulate vasodilator-stimulated phosphoprotein phosphorylation and angiogenesis in vascular endothelium. J Biol Chem. 2008;283(7):4439–47.

    Article  CAS  PubMed  Google Scholar 

  53. Reihill JA, Ewart MA, Hardie DG, Salt IP. AMP-activated protein kinase mediates VEGF-stimulated endothelial NO production. Biochem Biophys Res Commun. 2007;354(4):1084–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fisslthaler B, Fleming I, Keseru B, Walsh K, Busse R. Fluid shear stress and NO decrease the activity of the hydroxy-methylglutaryl coenzyme A reductase in endothelial cells via the AMP-activated protein kinase and FoxO1. Circ Res. 2007;100(2):e12–21.

    Article  CAS  PubMed  Google Scholar 

  55. Weber M, Lauer N, Mulsch A, Kojda G. The effect of peroxynitrite on the catalytic activity of soluble guanylyl cyclase. Free Radic Biol Med. 2001;31(11):1360–7.

    Article  CAS  PubMed  Google Scholar 

  56. Munzel T, Daiber A, Mulsch A. Explaining the phenomenon of nitrate tolerance. Circ Res. 2005;97(7):618–28.

    Article  PubMed  Google Scholar 

  57. Stasch JP, Schmidt PM, Nedvetsky PI, et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest. 2006;116(9):2552–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mohan S, Wu CC, Shin S, Fung HL. Continuous exposure to l-arginine induces oxidative stress and physiological tolerance in cultured human endothelial cells. Amino Acids. 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinidi Mohan PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohan, S. (2017). AMP-Activated Protein Kinase and l-Arginine. In: Patel, V., Preedy, V., Rajendram, R. (eds) L-Arginine in Clinical Nutrition. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-26009-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26009-9_3

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-26007-5

  • Online ISBN: 978-3-319-26009-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics