Skip to main content

l-Arginine in the Uterus and Placenta and During Gestation in Mammals

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Abstract

Often considered to be one of the most versatile amino acids, l-arginine is classified as a basic, cationic amino acid with three amine groups comprising a guanidino group in the side chain. l-arginine was first isolated from lupin seedlings by Schulze and Steiger (Z Physiol Chem 11:43–65, 1886), and shortly thereafter, Hedin (Z Physiol Chem 21:297–305, 1895) discovered that l-arginine is a component of animal proteins (as reviewed by Wu and Morris, Biochem J 336(Pt 1):1–17, 1998). Following the discovery of l-arginine, many efforts to determine its essentiality or dispensability were undertaken with a definitive answer still being debated today. The results from Scull and Rose (J Biol Chem 89(1):109–123, 1930) suggested that l-arginine was a dispensable or nonessential amino acid. This finding was repeated in humans by Rose and colleagues (J Biol Chem 206(1):421–430, 1954) who reported that removal of l-arginine from the diet did not result in a negative nitrogen balance in adult males.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schulze E, Steiger E. Über das Arginin. Z Physiol Chem. 1886;11:43–65.

    Google Scholar 

  2. Hedin SG. Eine methode das lysin zu isolieren, nebst einigen Bemerkungen über das lysatinin. Z Physiol Chem. 1895;21:297–305.

    Article  Google Scholar 

  3. Wu G, Morris Jr SM. l-Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scull CW, Rose WC. l-Arginine metabolism: I. The relation of the l-arginine content of the diet to the increments in tissue l-arginine during growth. J Biol Chem. 1930;89(1):109–23.

    Google Scholar 

  5. Rose WC, Haines WJ, Warner DT. The amino acid requirements of man: V. The role of lysine, l-arginine, and tryptophan. J Biol Chem. 1954;206(1):421–30.

    CAS  PubMed  Google Scholar 

  6. Arnold A, Kline OL, Elvehjem CA, Hart EB. Further studies on the growth factor required by chicks: the essential nature of l-arginine. J Biol Chem. 1936;116(2):699–709.

    CAS  Google Scholar 

  7. Klose AA, Stokstad ELR, Almquist HJ. The essential nature of l-arginine in the diet of the chick. J Biol Chem. 1938;123(3):691–8.

    CAS  Google Scholar 

  8. Borman A, Wood TR, Black HC, et al. The role of l-arginine in the growth with some observations on the effects of arginic acid. J Biol Chem. 1946;166(2):585–94.

    CAS  PubMed  Google Scholar 

  9. Visek WJ. l-Arginine needs, physiological state and usual diets. A reevaluation. J Nutr. 1986;116(1):36–46.

    CAS  PubMed  Google Scholar 

  10. Bartol FF. Uterus, Nonhuman. In: Knobil E, Neill JD, editors. Encyclopedia of reproduction, vol. 4. San Diego, CA: Academic; 1998. p. 950–60.

    Google Scholar 

  11. Senger PL. Pathways to pregnancy and parturition. 2nd ed. Pullman, WA: Current Conceptions; 2003.

    Google Scholar 

  12. Constantinescu GM. Anatomy of reproductive organs. In: Schatten H, Constantinescu GM, editors. Comparative reproductive biology. Ames, IA: Blackwell; 2007. p. 5–59.

    Chapter  Google Scholar 

  13. Grainger DA. Uterus, human. In: Knobil E, Neill JD, editors. Encyclopedia of reproduction, vol. 4. San Diego, CA: Academic; 1998. p. 942–50.

    Google Scholar 

  14. Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen. III. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses. Biol Reprod. 2009;80(3):602–9.

    Article  CAS  PubMed  Google Scholar 

  15. Gao H, Wu G, Spencer TE, Johnson GA, Li X, Bazer FW. Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol Reprod. 2009;80(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  16. Hugentobler SA, Diskin MG, Leese HJ, et al. Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol Reprod Dev. 2007;74(4):445–54.

    Article  CAS  PubMed  Google Scholar 

  17. Leese HJ, Hugentobler SA, Gray SM, et al. Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod Fertil Dev. 2007;20(1):1–8.

    Article  Google Scholar 

  18. Casslen BG. Free amino acids in human uterine fluid. Possible role of high taurine concentration. J Reprod Med. 1987;32(3):181–4.

    CAS  PubMed  Google Scholar 

  19. Greene J, Feugang J, Pfeiffer K, Stokes J, Bowers S, Ryan P. l-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells. Reprod Biol Endocrinol. 2013;11(1):15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select nutrients in the ovine uterine lumen. VIII. l-Arginine stimulates proliferation of ovine trophectoderm cells through MTOR-RPS6K-RPS6 signaling cascade and synthesis of nitric oxide and polyamines. Biol Reprod. 2011;84(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kim J-Y, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select nutrients in the ovine uterine lumen. VII. Effects of l-arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol Reprod. 2011;84(1):62–9.

    Article  CAS  PubMed  Google Scholar 

  22. Massmann GA, Zhang J, Figueroa JP. Functional and molecular characterization of nitric oxide synthase in the endometrium and myometrium of pregnant sheep during the last third of gestation. Am J Obstet Gynecol. 1999;181(1):116–25.

    Article  CAS  PubMed  Google Scholar 

  23. Kwon H, Wu G, Bazer FW, Spencer TE. Developmental changes in polyamine levels and synthesis in the ovine conceptus. Biol Reprod. 2003;69(5):1626–34.

    Article  CAS  PubMed  Google Scholar 

  24. Kwon H, Wu G, Meininger CJ, Bazer FW, Spencer TE. Developmental changes in nitric oxide synthesis in the ovine placenta. Biol Reprod. 2004;70(3):679–86.

    Article  CAS  PubMed  Google Scholar 

  25. Wu G, Pond WG, Flynn SP, Ott TL, Bazer FW. Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation. J Nutr. 1998;128(12):2395–402.

    CAS  PubMed  Google Scholar 

  26. Yu H, Yoo PK, Aguirre CC, et al. Widespread expression of arginase I in mouse tissues: biochemical and physiological implications. J Histochem Cytochem. 2003;51(9):1151–60.

    Article  CAS  PubMed  Google Scholar 

  27. Zeng X, Wang F, Fan X, et al. Dietary l-arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr. 2008;138(8):1421–5.

    CAS  PubMed  Google Scholar 

  28. Telfer JF, Irvine GA, Kohnen G, Campbell S, Cameron IT. Expression of endothelial and inducible nitric oxide synthase in non-pregnant and decidualized human endometrium. Mol Hum Reprod. 1997;3(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  29. Cameron IT, Campbell S. Nitric oxide in the endometrium. Hum Reprod Update. 1998;4(5):565–9.

    Article  CAS  PubMed  Google Scholar 

  30. Purcell TL, Given R, Chwalisz K, Garfield RE. Nitric oxide synthase distribution during implantation in the mouse. Mol Hum Reprod. 1999;5(5):467–75.

    Article  CAS  PubMed  Google Scholar 

  31. Gouge RC, Marshburn P, Gordon BE, Nunley W, Huet-Hudson YM. Nitric oxide as a regulator of embryonic development. Biol Reprod. 1998;58(4):875–9.

    Article  CAS  PubMed  Google Scholar 

  32. Manser RC, Leese HJ, Houghton FD. Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism. Biol Reprod. 2004;71(2):528–33.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Y-C, Chi Y-J, Yu Y-S, et al. Polyamines are essential in embryo implantation: expression and function of polyamine-related genes in mouse uterus during peri-implantation period. Endocrinology. 2008;149(5):2325–32.

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez-Sallaberry C, Simmen FA, Simmen RCM. Polyamine- and insulin-like growth factor-i-mediated proliferation of porcine uterine endometrial cells: a potential role for spermidine/spermine N1-acetyltransferase during peri-implantation. Biol Reprod. 2001;65(2):587–94.

    Article  CAS  PubMed  Google Scholar 

  35. Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen. V. Nitric oxide synthase, GTP cyclohydrolase, and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses. Biol Reprod. 2009;81(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  36. Stewart MD, Johnson GA, Gray CA, et al. Prolactin receptor and uterine milk protein expression in the ovine endometrium during the estrous cycle and pregnancy. Biol Reprod. 2000;62(6):1779–89.

    Article  CAS  PubMed  Google Scholar 

  37. Rosenfeld CS. Introduction to comparative placentation. In: Schatten H, Constantinescu GM, editors. Comparative reproductive biology. Ames, IA: Blackwell; 2007. p. 263–70.

    Chapter  Google Scholar 

  38. Regnault TR, Friedman JE, Wilkening RB, Anthony RV, Hay Jr WW. Fetoplacental transport and utilization of amino acids in IUGR—a review. Placenta. 2005;26(Suppl A):S52–62.

    Article  PubMed  Google Scholar 

  39. Grillo M, Lanza A, Colombatto S. Transport of amino acids through the placenta and their role. Amino Acids. 2008;34(4):517–23.

    Article  CAS  PubMed  Google Scholar 

  40. Teasdale F, Jean-Jacques G. Morphometric evaluation of the microvillous surface enlargement factor in the human placenta from mid-gestation to term. Placenta. 1985;6(5):375–81.

    Article  CAS  PubMed  Google Scholar 

  41. Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006;572(1):25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ayuk PT-Y, Sibley CP, Donnai P, D’Souza S, Glazier JD. Development and polarization of cationic amino acid transporters and regulators in the human placenta. Am J Physiol: Cell Physiol. 2000;278(6):C1162–71.

    CAS  Google Scholar 

  43. Furesz TC, Smith CH. Identification of two leucine-sensitive lysine transport activities in human placental basal membrane. Placenta. 1997;18(8):649–55.

    Article  CAS  PubMed  Google Scholar 

  44. Ayuk PT-Y, Theophanous D, D’Souza SW, Sibley CP, Glazier JD. l-arginine transport by the microvillous plasma membrane of the syncytiotrophoblast from human placenta in relation to nitric oxide production: effects of gestation, preeclampsia, and intrauterine growth restriction. J Clin Endocrinol Metab. 2002;87(2):747–51.

    Article  CAS  PubMed  Google Scholar 

  45. Ishikawa T, Harada T, Koi H, Kubota T, Azuma H, Aso T. Identification of arginase in human placental villi. Placenta. 2007;28(2–3):133–8.

    Article  CAS  PubMed  Google Scholar 

  46. Myatt L, Brockman DE, Eis ALW, Pollock JS. Immunohistochemical localization of nitric oxide synthase in the human placenta. Placenta. 1993;14(5):487–95.

    Article  CAS  PubMed  Google Scholar 

  47. Swaisgood CM, Zu H-X, Perkins DJ, et al. Coordinate expression of inducible nitric oxide synthase and cyclooxygenase-2 genes in uterine tissues of endotoxin-treated pregnant mice. Am J Obstet Gynecol. 1997;177(5):1253–62.

    Article  CAS  PubMed  Google Scholar 

  48. Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE. Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod. 2005;72(4):842–50.

    Article  CAS  PubMed  Google Scholar 

  49. Buhimschi I, Yallampalli C, Dong Y-L, Garfield RE. Involvement of a nitric oxide-cyclic guanosine monophosphate pathway in control of human uterine contractility during pregnancy. Am J Obstet Gynecol. 1995;172(5):1577–84.

    Article  CAS  PubMed  Google Scholar 

  50. Mayer B, Brunner F, Schmidt K. Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol. 1993;45(2):367–74.

    Article  CAS  PubMed  Google Scholar 

  51. Jovanović A, Grbović L, Tulić I. l-Arginine induces relaxation of human uterine artery with both intact and denuded endothelium. Eur J Pharmacol. 1994;256(1):103–7.

    Article  PubMed  Google Scholar 

  52. Taylor HS, Fei X. Emx2 regulates mammalian reproduction by altering endometrial cell proliferation. Mol Endocrinol. 2005;19(11):2839–46.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Chen CH, Confino E, Barnes R, Milad M, Kazer RR. Increased endometrial thickness is associated with improved treatment outcome for selected patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2005;83(2):336–40.

    Article  PubMed  Google Scholar 

  54. Gonen Y, Casper RF. Prediction of implantation by the sonographic appearance of the endometrium during controlled ovarian stimulation for in vitro fertilization (IVF). J In Vitro Fert Embryo Transf. 1990;7(3):146–52.

    Article  CAS  PubMed  Google Scholar 

  55. Sher G, Herbert C, Maassarani G, Jacobs MH. Assessment of the late proliferative phase endometrium by ultrasonography in patients undergoing in-vitro fertilization and embryo transfer (IVF/ET). Hum Reprod. 1991;6(2):232–7.

    CAS  PubMed  Google Scholar 

  56. Martin PM, Sutherland AE. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol. 2001;240(1):182–93.

    Article  CAS  PubMed  Google Scholar 

  57. Spencer TE, Johnson GA, Bazer FW, Burghardt RC. Implantation mechanisms: insights from the sheep. Reproduction. 2004;128(6):657–68.

    Article  CAS  PubMed  Google Scholar 

  58. Kim J, Song G, Wu G, Gao H, Johnson GA, Bazer FW. l-Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway. Biol Reprod. 2013;88(5):113, 111–119.

    Google Scholar 

  59. Bazer FW, Spencer TE, Johnson GA, Burghardt RC, Wu G. Comparative aspects of implantation. Reproduction. 2009;138(2):195–209.

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW. Functional roles of l-arginine during the peri-implantation period of pregnancy. III. l-Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-MTOR signaling pathways. Biol Reprod. 2015;92(3):75, 71–17.

    Google Scholar 

  61. Reynolds LP, Redmer DA. Angiogenesis in the placenta. Biol Reprod. 2001;64(4):1033–40.

    Article  CAS  PubMed  Google Scholar 

  62. Zheng J, Wen Y, Austin JL, Chen D-b. Exogenous nitric oxide stimulates cell proliferation via activation of a mitogen-activated protein kinase pathway in ovine fetoplacental artery endothelial cells. Biol Reprod. 2006;74(2):375–82.

    Article  CAS  PubMed  Google Scholar 

  63. Frank JW, Escobar J, Nguyen HV, et al. Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets. J Nutr. 2007;137(2):315–9.

    CAS  PubMed  Google Scholar 

  64. Liu XD, Wu X, Yin YL, et al. Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids. 2012;42(6):2111–9.

    Article  CAS  PubMed  Google Scholar 

  65. Lefevre PL, Palin MF, Murphy BD. Polyamines on the reproductive landscape. Endocr Rev. 2011;32(5):694–712.

    Article  CAS  PubMed  Google Scholar 

  66. Bazer FW, Kim J, Ka H, Johnson GA, Wu G, Song G. Select nutrients in the uterine lumen of sheep and pigs affect conceptus development. J Reprod Dev. 2012;58(2):180–8.

    Article  CAS  PubMed  Google Scholar 

  67. Wu G, Bazer FW, Satterfield MC, et al. Impacts of l-arginine nutrition on embryonic and fetal development in mammals. Amino Acids. 2013;45(2):241–56.

    Article  CAS  PubMed  Google Scholar 

  68. Wu G, Bazer FW, Davis TA, et al. l-Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009;37(1):153–68.

    Article  CAS  PubMed  Google Scholar 

  69. Krause BJ, Hanson MA, Casanello P. Role of nitric oxide in placental vascular development and function. Placenta. 2011;32(11):797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mateo RD, Wu G, Bazer FW, Park JC, Shinzato I, Kim SW. Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr. 2007;137(3):652–6.

    CAS  PubMed  Google Scholar 

  71. Wu G, Bazer FW, Burghardt RC, et al. Impacts of amino acid nutrition on pregnancy outcomes in pigs: mechanisms and implications for swine production. J Anim Sci. 2010;88 Suppl 13:E195–204.

    Article  CAS  PubMed  Google Scholar 

  72. Gao K, Jiang Z, Lin Y, et al. Dietary l-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids. 2012;42(6):2207–14.

    Article  CAS  PubMed  Google Scholar 

  73. de Boo HA, van Zijl PL, Smith DE, Kulik W, Lafeber HN, Harding JE. l-Arginine and mixed amino acids increase protein accretion in the growth-restricted and normal ovine fetus by different mechanisms. Pediatr Res. 2005;58(2):270–7.

    Article  PubMed  Google Scholar 

  74. Zhou W, Gosch G, Guerra T, et al. Amino acid profiles in first trimester amniotic fluids of healthy bovine cloned pregnancies are similar to those of IVF pregnancies, but not nonviable cloned pregnancies. Theriogenology. 2014;81(2):225–9.

    Article  CAS  PubMed  Google Scholar 

  75. Zeng X, Mao X, Huang Z, Wang F, Wu G, Qiao S. l-Arginine enhances embryo implantation in rats through PI3K/PKB/mTOR/NO signaling pathway during early pregnancy. Reproduction. 2013;145(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  76. Vosatka RJ, Hassoun PM, Harvey-Wilkes KB. Dietary l-arginine prevents fetal growth restriction in rats. Am J Obstet Gynecol. 1998;178(2):242–6.

    Article  CAS  PubMed  Google Scholar 

  77. Gui S, Jia J, Niu X, et al. l-Arginine supplementation for improving maternal and neonatal outcomes in hypertensive disorder of pregnancy: a systematic review. J Renin Angiotensin Aldosterone Syst. 2014;15(1):88–96.

    Article  CAS  PubMed  Google Scholar 

  78. Zhu Q, Yue X, Tian QY, et al. Effect of l-arginine supplementation on blood pressure in pregnant women: a meta-analysis of placebo-controlled trials. Hypertens Pregnancy. 2013;32(1):32–41.

    Article  CAS  PubMed  Google Scholar 

  79. Wu X, Yin YL, Liu YQ, et al. Effect of dietary l-arginine and N-carbamylglutamate supplementation on reproduction and gene expression of eNOS, VEGFA and PlGF1 in placenta in late pregnancy of sows. Anim Reprod Sci. 2012;132(3–4):187–92.

    Article  CAS  PubMed  Google Scholar 

  80. Groebner AE, Zakhartchenko V, Bauersachs S, et al. Reduced amino acids in the bovine uterine lumen of cloned versus in vitro fertilized pregnancies prior to implantation. Cell Reprogram. 2011;13(5):403–10.

    CAS  PubMed  Google Scholar 

  81. Greene JM, Dunaway CW, Bowers SD, Rude BJ, Feugang JM, Ryan PL. Dietary l-arginine supplementation during gestation in mice enhances reproductive performance and Vegfr2 transcription activity in the fetoplacental unit. J Nutr. 2012;142(3):456–60.

    Article  CAS  PubMed  Google Scholar 

  82. Wang X, Johnson GA, Burghardt RC, Wu G, Bazer FW. Uterine histotroph and conceptus development. I. cooperative effects of l-arginine and secreted phosphoprotein 1 on proliferation of ovine trophectoderm cells via activation of the PDK1-Akt/PKB-TSC2-MTORC1 signaling cascade. Biol Reprod. 2015;92(2):51.

    Article  PubMed  Google Scholar 

  83. Abe H, Ishikawa W, Kushima T, et al. Nitric oxide induces vascular endothelial growth factor expression in the rat placenta in vivo and in vitro. Biosci Biotechnol Biochem. 2013;77(5):971–6.

    Article  CAS  PubMed  Google Scholar 

  84. Altun ZS, Uysal S, Guner G, Yilmaz O, Posaci C. Effects of oral l-arginine supplementation on blood pressure and asymmetric dimethylarginine in stress-induced preeclamptic rats. Cell Biochem Funct. 2008;26(5):648–53.

    Article  CAS  PubMed  Google Scholar 

  85. Dorniak-Wall T, Grivell RM, Dekker GA, Hague W, Dodd JM. The role of l-arginine in the prevention and treatment of pre-eclampsia: a systematic review of randomised trials. J Hum Hypertens. 2014;28(4):230–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Greene BS, MS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Greene, J.M., Ryan, P.L. (2017). l-Arginine in the Uterus and Placenta and During Gestation in Mammals. In: Patel, V., Preedy, V., Rajendram, R. (eds) L-Arginine in Clinical Nutrition. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-26009-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26009-9_22

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-26007-5

  • Online ISBN: 978-3-319-26009-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics