Skip to main content

The l-Arginine/Asymmetric Dimethylarginine (ADMA) Ratio in Health and Disease: An Overview

  • Chapter
  • First Online:
L-Arginine in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

Abstract

Endothelium is acting a vital role in the control of tonus of vasculature and homeostasis (Widlansky et al., J Am Coll Cardiol 42:1149–1460, 2003). Although the significance of endothelial dysfunction has been well described by many published studies, especially in cardiovascular diseases, so far, there are some challenges in the evaluation of endothelial function due to lack of a standardization. Nitric oxide (NO) is mainly released by the endothelium and plays a critical role in the maintenance of normal endothelial function by regulating the vascular tone (Pacher et al., Physiol Rev 87:315–424, 2007). Inactivation and/or reduced synthesis of NO leads to endothelial dysfunction, whereas an excess of NO may cause circulatory shock (Forstermann, Pflugers Arch 459:923–939, 2010). In addition, NO modulates the interactions of circulating blood cells with the vascular wall, which are the key processes involved in the pathogenesis of atherosclerosis such as adhesion of inflammatory cells to the vascular wall, the aggregation of platelets, and the proliferation of smooth muscle cells (Moncada and Higgs, Br J Pharmacol 147:S193–S201, 2006). Therefore, NO bioavailability is more important and has recently been used as an indicator of endothelial function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Widlansky ME, Gokce N, Keaney Jr JF, et al. The clinical implications of endothelial dysfunction. J Am Coll Cardiol. 2003;42:1149–60.

    Article  CAS  PubMed  Google Scholar 

  2. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Forstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 2010;459:923–39.

    Article  PubMed  Google Scholar 

  4. Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol. 2006;147 Suppl 1:S193–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Anthony S, Leiper J, Vallance P. Endogenous production of nitric oxide synthase inhibitors. Vasc Med. 2005;10 Suppl 1:S3–9.

    Article  PubMed  Google Scholar 

  6. van der Zwan LP, Scheffer PG, Dekker JM, et al. Systemic inflammation is linked to low l-arginine and high ADMA plasma levels resulting in an unfavourable NOS substrate-to-inhibitor ratio: the Hoorn Study. Clin Sci (Lond). 2011;121:71–8.

    Google Scholar 

  7. Bode-Boger SM, Scalera F, Ignarro LJ. The l-Arginine paradox: Importance of the l-arginine/asymmetrical dimethylarginine ratio. Pharmacol Ther. 2007;114:295–306.

    Google Scholar 

  8. Palmer RM, Rees DD, Ashton DS, et al. l-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun. 1988;153:1251–6.

    Google Scholar 

  9. Wu G, Morris Jr SM. l-Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.

    Google Scholar 

  10. Morris Jr SM. l-Arginine metabolism in vascular biology and disease. Vasc Med. 2005;10 Suppl 1:S83–7.

    Google Scholar 

  11. Zani BG, Bohlen HG. Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production. Am J Physiol Heart Circ Physiol. 2005;289:H1381–90.

    Article  CAS  PubMed  Google Scholar 

  12. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Teerlink T, Luo Z, Palm F, et al. Cellular ADMA: regulation and action. Pharmacol Res. 2009;60:448–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cardounel AJ, Cui H, Samouilov A, et al. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J Biol Chem. 2007;282:879–87.

    Article  CAS  PubMed  Google Scholar 

  15. Closs EI, Basha FZ, Habermeier A, et al. Interference of l-arginine analogues with l-arginine transport mediated by the y+ carrier hCAT-2B. Nitric Oxide. 1997;1:65–73.

    Google Scholar 

  16. Vallance P, Leone A, Calver A, et al. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992;339:572–5.

    Article  CAS  PubMed  Google Scholar 

  17. Gray GA, Patrizio M, Sherry L, et al. Immunolocalisation and activity of DDAH I and II in the heart and modification post-myocardial infarction. Acta Histochem. 2010;112:413–23.

    Article  CAS  PubMed  Google Scholar 

  18. Luneburg N, Xanthakis V, Schwedhelm E, et al. Reference intervals for plasma l-arginine and the l-arginine:asymmetric dimethylarginine ratio in the Framingham Offspring Cohort. J Nutr. 2011;141:2186–90.

    Google Scholar 

  19. Horowitz JD, Heresztyn T. An overview of plasma concentrations of asymmetric dimethylarginine (ADMA) in health and disease and in clinical studies: methodological considerations. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;851:42–50.

    Article  CAS  PubMed  Google Scholar 

  20. Martens-Lobenhoffer J, Bode-Boger SM. Simultaneous detection of l-arginine, asymmetric dimethylarginine, symmetric dimethylarginine and citrulline in human plasma and urine applying liquid chromatography-mass spectrometry with very straightforward sample preparation. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;798:231–9.

    Article  CAS  PubMed  Google Scholar 

  21. Boger RH. Asymmetric dimethylarginine (ADMA) and cardiovascular disease: insights from prospective clinical trials. Vasc Med. 2005;10 Suppl 1:S19–25.

    Article  PubMed  Google Scholar 

  22. Richir MC, van Lambalgen AA, Teerlink T, et al. Low l-arginine/asymmetric dimethylarginine ratio deteriorates systemic hemodynamics and organ blood flow in a rat model. Crit Care Med. 2009;37:2010–7.

    Article  CAS  PubMed  Google Scholar 

  23. Barbul A, Lazarou SA, Efron DT, et al. l-Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery. 1990;108:331–6. discussion 336–7.

    CAS  PubMed  Google Scholar 

  24. Erre GL, Sanna P, Zinellu A, et al. Plasma asymmetric dimethylarginine (ADMA) levels and atherosclerotic disease in ankylosing spondylitis: a cross-sectional study. Clin Rheumatol. 2011;30:21–7.

    Article  PubMed  Google Scholar 

  25. Antoniades C, Demosthenous M, Tousoulis D, et al. Role of asymmetrical dimethylarginine in inflammation-induced endothelial dysfunction in human atherosclerosis. Hypertension. 2011;58:93–8.

    Article  CAS  PubMed  Google Scholar 

  26. Chirinos JA, David R, Bralley JA, et al. Endogenous nitric oxide synthase inhibitors, arterial hemodynamics, and subclinical vascular disease: the PREVENCION Study. Hypertension. 2008;52:1051–9.

    Article  CAS  PubMed  Google Scholar 

  27. Nijveldt RJ, Teerlink T, van Guldener C, et al. Handling of asymmetrical dimethylarginine and symmetrical dimethylarginine by the rat kidney under basal conditions and during endotoxaemia. Nephrol Dial Transplant. 2003;18:2542–50.

    Article  CAS  PubMed  Google Scholar 

  28. Mittermayer F, Namiranian K, Pleiner J, et al. Acute Escherichia coli endotoxaemia decreases the plasma l-arginine/asymmetrical dimethylarginine ratio in humans. Clin Sci (Lond). 2004;106:577–81.

    Article  CAS  Google Scholar 

  29. Boger RH. The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res. 2003;59:824–33.

    Article  CAS  PubMed  Google Scholar 

  30. Landray MJ, Emberson JR, Blackwell L, et al. Prediction of ESRD and death among people with CKD: the Chronic Renal Impairment in Birmingham (CRIB) prospective cohort study. Am J Kidney Dis. 2010;56:1082–94.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mittermayer F, Mayer BX, Meyer A, et al. Circulating concentrations of asymmetrical dimethyl-l-Arginine are increased in women with previous gestational diabetes. Diabetologia. 2002;45:1372–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ellis J, Wennerholm UB, Bengtsson A, et al. Levels of dimethylarginines and cytokines in mild and severe preeclampsia. Acta Obstet Gynecol Scand. 2001;80:602–8.

    Article  CAS  PubMed  Google Scholar 

  33. Holguin F, Comhair SA, Hazen SL, et al. An association between l-arginine/asymmetric dimethyl arginine balance, obesity, and the age of asthma onset phenotype. Am J Respir Crit Care Med. 2013;187:153–9.

    Google Scholar 

  34. Maas R, Schulze F, Baumert J, et al. Asymmetric dimethylarginine, smoking, and risk of coronary heart disease in apparently healthy men: prospective analysis from the population-based monitoring of trends and determinants in cardiovascular disease/Kooperative Gesundheitsforschung in der Region Augsburg study and experimental data. Clin Chem. 2007;53:693–701.

    Article  CAS  PubMed  Google Scholar 

  35. Moss MB, Brunini TM, Soares De Moura R, et al. Diminished l-Arginine bioavailability in hypertension. Clin Sci (Lond). 2004;107:391–7.

    Article  CAS  Google Scholar 

  36. Hsu CN, Huang LT, Lau YT, et al. The combined ratios of l-arginine and asymmetric and symmetric dimethylarginine as biomarkers in spontaneously hypertensive rats. Transl Res. 2012;159:90–8.

    Google Scholar 

  37. Boger RH, Bode-Boger SM, Szuba A, et al. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation. 1998;98:1842–7.

    Article  CAS  PubMed  Google Scholar 

  38. Boger RH, Bode-Boger SM, Sydow K, et al. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2000;20:1557–64.

    Article  CAS  PubMed  Google Scholar 

  39. Tousoulis D, Boger RH, Antoniades C, et al. Mechanisms of disease: l-arginine in coronary atherosclerosis—a clinical perspective. Nat Clin Pract Cardiovasc Med. 2007;4:274–83.

    Google Scholar 

  40. El-Tamimi H, Davies GJ, Crea F, et al. Response of human coronary arteries to acetylcholine after injury by coronary angioplasty. J Am Coll Cardiol. 1993;21:1152–7.

    Article  CAS  PubMed  Google Scholar 

  41. Leong T, Zylberstein D, Graham I, et al. Asymmetric dimethylarginine independently predicts fatal and nonfatal myocardial infarction and stroke in women: 24-year follow-up of the population study of women in Gothenburg. Arterioscler Thromb Vasc Biol. 2008;28:961–7.

    Article  CAS  PubMed  Google Scholar 

  42. Lu TM, Ding YA, Lin SJ, et al. Plasma levels of asymmetrical dimethylarginine and adverse cardiovascular events after percutaneous coronary intervention. Eur Heart J. 2003;24:1912–9.

    Article  CAS  PubMed  Google Scholar 

  43. Sahinarslan A, Cengel A, Biberoglu G, et al. Plasma asymmetric dimethylarginine level and extent of lesion at coronary angiography. Coron Artery Dis. 2006;17:605–9.

    Article  PubMed  Google Scholar 

  44. Koc F, Ardic I, Erdem S, et al. Relationship between l-Arginine/asymmetric dimethylarginine, homocysteine, folic acid, vitamin B levels, and coronary artery ectasia. Coron Artery Dis. 2010;21:445–9.

    Article  PubMed  Google Scholar 

  45. Selcuk MT, Selcuk H, Temizhan A, et al. Asymmetric dimethylarginine plasma concentrations and l-arginine/asymmetric dimethylarginine ratio in patients with slow coronary flow. Coron Artery Dis. 2007;18:545–51.

    Google Scholar 

  46. Walker HA, McGing E, Fisher I, et al. Endothelium-dependent vasodilation is independent of the plasma l-Arginine/ADMA ratio in men with stable angina: lack of effect of oral l-arginine on endothelial function, oxidative stress and exercise performance. J Am Coll Cardiol. 2001;38:499–505.

    Google Scholar 

  47. Jones SP, Bolli R. The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol. 2006;40:16–23.

    Article  CAS  PubMed  Google Scholar 

  48. Anderssohn M, Rosenberg M, Schwedhelm E, et al. The l-arginine-asymmetric dimethylarginine ratio is an independent predictor of mortality in dilated cardiomyopathy. J Card Fail. 2012;18:904–11.

    Google Scholar 

  49. Seljeflot I, Nilsson BB, Westheim AS, et al. The l-arginine-asymmetric dimethylarginine ratio is strongly related to the severity of chronic heart failure. No effects of exercise training. J Card Fail. 2011;17:135–42.

    Google Scholar 

  50. Tveit A, Grundvold I, Olufsen M, et al. Candesartan in the prevention of relapsing atrial fibrillation. Int J Cardiol. 2007;120:85–91.

    Article  PubMed  Google Scholar 

  51. Boger RH, Cooke JP, Vallance P. ADMA: an emerging cardiovascular risk factor. Vasc Med. 2005;10 Suppl 1:S1–2.

    Article  PubMed  Google Scholar 

  52. Ellger B, Richir MC, van Leeuwen PA, et al. Glycemic control modulates arginine and asymmetrical-dimethylarginine levels during critical illness by preserving dimethylarginine-dimethylaminohydrolase activity. Endocrinology. 2008;149:3148–57.

    Article  CAS  PubMed  Google Scholar 

  53. Anderssohn M, Schwedhelm E, Luneburg N, et al. Asymmetric dimethylarginine as a mediator of vascular dysfunction and a marker of cardiovascular disease and mortality: an intriguing interaction with diabetes mellitus. Diab Vasc Dis Res. 2010;7:105–18.

    Article  PubMed  Google Scholar 

  54. Hanai K, Babazono T, Nyumura I, et al. Asymmetric dimethylarginine is closely associated with the development and progression of nephropathy in patients with type 2 diabetes. Nephrol Dial Transplant. 2009;24:1884–8.

    Article  CAS  PubMed  Google Scholar 

  55. Eid HM, Reims H, Arnesen H, et al. Decreased levels of asymmetric dimethylarginine during acute hyperinsulinemia. Metabolism. 2007;56:464–9.

    Article  CAS  PubMed  Google Scholar 

  56. Wilkinson IB, MacCallum H, Cockcroft JR, et al. Inhibition of basal nitric oxide synthesis increases aortic augmentation index and pulse wave velocity in vivo. Br J Clin Pharmacol. 2002;53:189–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Angel K, Provan SA, Mowinckel P, et al. The l-arginine/asymmetric dimethylarginine ratio is improved by anti-tumor necrosis factor-alpha therapy in inflammatory arthropathies. Associations with aortic stiffness. Atherosclerosis. 2012;225:160–5.

    Google Scholar 

  58. Boger RH. The pharmacodynamics of l-arginine. J Nutr. 2007;137:1650S–5.

    Google Scholar 

  59. Yilmaz MI, Sonmez A, Saglam M, et al. ADMA levels correlate with proteinuria, secondary amyloidosis, and endothelial dysfunction. J Am Soc Nephrol. 2008;19:388–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Caglar K, Yilmaz MI, Sonmez A, et al. ADMA, proteinuria, and insulin resistance in non-diabetic stage I chronic kidney disease. Kidney Int. 2006;70:781–7.

    Article  CAS  PubMed  Google Scholar 

  61. Boger RH, Zoccali C. ADMA: a novel risk factor that explains excess cardiovascular event rate in patients with end-stage renal disease. Atheroscler Suppl. 2003;4:23–8.

    Article  PubMed  Google Scholar 

  62. Zoccali C, Bode-Boger S, Mallamaci F, et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet. 2001;358:2113–7.

    Article  CAS  PubMed  Google Scholar 

  63. Shi B, Ni Z, Zhou W, et al. Circulating levels of asymmetric dimethylarginine are an independent risk factor for left ventricular hypertrophy and predict cardiovascular events in pre-dialysis patients with chronic kidney disease. Eur J Intern Med. 2010;21:444–8.

    Article  CAS  PubMed  Google Scholar 

  64. Brunini TM, Moss MB, Siqueira MA, et al. Nitric oxide, malnutrition and chronic renal failure. Cardiovasc Hematol Agents Med Chem. 2007;5:155–61.

    Article  CAS  PubMed  Google Scholar 

  65. Celik M, Iyisoy A, Celik T, et al. The relationship between l-arginine/ADMA ratio and coronary collateral development in patients with low glomerular filtration rate. Cardiol J. 2012;19:29–35.

    Google Scholar 

  66. Nijveldt RJ, Siroen MP, van der Hoven B, et al. High plasma l-arginine concentrations in critically ill patients suffering from hepatic failure. Eur J Clin Nutr. 2004;58:587–93.

    Article  CAS  PubMed  Google Scholar 

  67. Siroen MP, Wiest R, Richir MC, et al. Transjugular intrahepatic portosystemic shunt-placement increases arginine/asymmetric dimethylarginine ratio in cirrhotic patients. World J Gastroenterol. 2008;14:7214–9.

    Google Scholar 

  68. Mookerjee RP, Malaki M, Davies NA, et al. Increasing dimethylarginine levels are associated with adverse clinical outcome in severe alcoholic hepatitis. Hepatology. 2007;45:62–71.

    Article  CAS  PubMed  Google Scholar 

  69. Siroen MP, Warle MC, Teerlink T, et al. The transplanted liver graft is capable of clearing asymmetric dimethylarginine. Liver Transpl. 2004;10:1524–30.

    Article  PubMed  Google Scholar 

  70. Paroni R, Barassi A, Ciociola F, et al. Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and l-arginine in patients with arteriogenic and non-arteriogenic erectile dysfunction. Int J Androl. 2012;35:660–7.

    Google Scholar 

  71. Chen J, Wollman Y, Chernichovsky T, et al. Effect of oral administration of high-dose nitric oxide donor l-arginine in men with organic erectile dysfunction: results of a double-blind, randomized, placebo-controlled study. BJU Int. 1999;83:269–73.

    Google Scholar 

  72. Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide: recent advances. Pharmacol Rev. 2009;61:62–97.

    Article  CAS  PubMed  Google Scholar 

  73. Washington CW, Zipfel GJ, Participants in the International Multi-disciplinary Consensus Conference on the Critical Care Management of Subarachnoid H. Detection and monitoring of vasospasm and delayed cerebral ischemia: a review and assessment of the literature. Neurocrit Care. 2011;15:312–7.

    Article  PubMed  Google Scholar 

  74. Staalso JM, Bergstrom A, Edsen T, et al. Low plasma l-arginine:asymmetric dimethyl l-arginine ratios predict mortality after intracranial aneurysm rupture. Stroke. 2013;44:1273–81.

    Google Scholar 

  75. Scherbakov N, Sandek A, Martens-Lobenhoffer J, et al. Endothelial dysfunction of the peripheral vascular bed in the acute phase after ischemic stroke. Cerebrovasc Dis. 2012;33:37–46.

    Article  CAS  PubMed  Google Scholar 

  76. Bergstrom A, Staalso JM, Romner B, et al. Impaired endothelial function after aneurysmal subarachnoid haemorrhage correlates with l-arginine:asymmetric dimethylarginine ratio. Br J Anaesth. 2014;112:311–8.

    Google Scholar 

  77. Gaston B, Drazen JM, Loscalzo J, et al. The biology of nitrogen oxides in the airways. Am J Respir Crit Care Med. 1994;149:538–51.

    Article  CAS  PubMed  Google Scholar 

  78. Holguin F. l-Arginine and nitric oxide pathways in obesity-associated asthma. J Allergy (Cairo). 2013;2013:714595.

    Google Scholar 

  79. Richir MC, Siroen MP, van Elburg RM, et al. Low plasma concentrations of l-arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis. Br J Nutr. 2007;97:906–11.

    Google Scholar 

  80. Kubes P. Nitric oxide modulates epithelial permeability in the feline small intestine. Am J Physiol. 1992;262:G1138–42.

    CAS  PubMed  Google Scholar 

  81. Scalera F, Martens-Lobenhoffer J, Bukowska A, et al. Effect of telmisartan on nitric oxide—asymmetrical dimethylarginine system: role of angiotensin II type 1 receptor gamma and peroxisome proliferator activated receptor gamma signaling during endothelial aging. Hypertension. 2008;51:696–703.

    Article  CAS  PubMed  Google Scholar 

  82. Kawata T, Daimon M, Hasegawa R, et al. Effect of angiotensin-converting enzyme inhibitor on serum asymmetric dimethylarginine and coronary circulation in patients with type 2 diabetes mellitus. Int J Cardiol. 2009;132:286–8.

    Article  PubMed  Google Scholar 

  83. Hov GG, Sagen E, Hatlen G, et al. l-Arginine/asymmetric dimethylarginine ratio and cardiovascular risk factors in patients with predialytic chronic kidney disease. Clin Biochem. 2011;44:642–6.

    Google Scholar 

  84. Delles C, Jacobi J, Schlaich MP, et al. Assessment of endothelial function of the renal vasculature in human subjects. Am J Hypertens. 2002;15:3–9.

    Article  CAS  PubMed  Google Scholar 

  85. Janatuinen T, Laakso J, Laaksonen R, et al. Plasma asymmetric dimethylarginine modifies the effect of pravastatin on myocardial blood flow in young adults. Vasc Med. 2003;8:185–9.

    Article  PubMed  Google Scholar 

  86. Dierkes J, Westphal S, Martens-Lobenhoffer J, et al. Fenofibrate increases the l-arginine:ADMA ratio by increase of l-arginine concentration but has no effect on ADMA concentration. Atherosclerosis. 2004;173:239–44.

    Google Scholar 

  87. Sydow K, Schwedhelm E, Arakawa N, et al. ADMA and oxidative stress are responsible for endothelial dysfunction in hyperhomocyst(e)inemia: effects of l-arginine and B vitamins. Cardiovasc Res. 2003;57:244–52.

    Google Scholar 

  88. Stuhlinger MC, Abbasi F, Chu JW, et al. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA. 2002;287:1420–6.

    Article  PubMed  Google Scholar 

  89. Wang TD, Chen WJ, Cheng WC, et al. Relation of improvement in endothelium-dependent flow-mediated vasodilation after rosiglitazone to changes in asymmetric dimethylarginine, endothelin-1, and C-reactive protein in nondiabetic patients with the metabolic syndrome. Am J Cardiol. 2006;98:1057–62.

    Article  CAS  PubMed  Google Scholar 

  90. O’Kane P, Xie L, Liu Z, et al. Aspirin acetylates nitric oxide synthase type 3 in platelets thereby increasing its activity. Cardiovasc Res. 2009;83:123–30.

    Article  PubMed  Google Scholar 

  91. Setola E, Monti LD, Lanzi R, et al. Effects of growth hormone treatment on l-arginine to asymmetric dimethylarginine ratio and endothelial function in patients with growth hormone deficiency. Metabolism. 2008;57:1685–90.

    Google Scholar 

  92. Boger RH, Bode-Boger SM, Thiele W, et al. Restoring vascular nitric oxide formation by l-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease. J Am Coll Cardiol. 1998;32:1336–44.

    Google Scholar 

  93. Adams MR, McCredie R, Jessup W, et al. Oral l-arginine improves endothelium-dependent dilatation and reduces monocyte adhesion to endothelial cells in young men with coronary artery disease. Atherosclerosis. 1997;129:261–9.

    Google Scholar 

  94. Drexler H, Zeiher AM, Meinzer K, et al. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by l-arginine. Lancet. 1991;338:1546–50.

    Google Scholar 

  95. Lucotti P, Monti L, Setola E, et al. Oral l-arginine supplementation improves endothelial function and ameliorates insulin sensitivity and inflammation in cardiopathic nondiabetic patients after an aortocoronary bypass. Metabolism. 2009;58:1270–6.

    Google Scholar 

  96. Okyay K, Cengel A, Sahinarslan A, et al. Plasma asymmetric dimethylarginine and l-arginine levels in patients with cardiac syndrome X. Coron Artery Dis. 2007;18:539–44.

    Google Scholar 

  97. Tsao PS, Theilmeier G, Singer AH, et al. l-arginine attenuates platelet reactivity in hypercholesterolemic rabbits. Arterioscler Thromb. 1994;14:1529–33.

    Google Scholar 

  98. Wilson AM, Harada R, Nair N, et al. l-arginine supplementation in peripheral arterial disease: no benefit and possible harm. Circulation. 2007;116:188–95.

    Google Scholar 

  99. Schwedhelm E, Maas R, Freese R, et al. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and l-arginine: impact on nitric oxide metabolism. Br J Clin Pharmacol. 2008;65:51–9.

    Google Scholar 

  100. Holven KB, Haugstad TS, Holm T, et al. Folic acid treatment reduces elevated plasma levels of asymmetric dimethylarginine in hyperhomocysteinaemic subjects. Br J Nutr. 2003;89:359–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Celik MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Celik, M., Unal, H.U. (2017). The l-Arginine/Asymmetric Dimethylarginine (ADMA) Ratio in Health and Disease: An Overview. In: Patel, V., Preedy, V., Rajendram, R. (eds) L-Arginine in Clinical Nutrition. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-26009-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26009-9_18

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-26007-5

  • Online ISBN: 978-3-319-26009-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics