Skip to main content

l-Arginine Metabolism Impairment in Sepsis and Diseases: Causes and Consequences

  • Chapter
  • First Online:
Book cover L-Arginine in Clinical Nutrition

Abstract

Sepsis is recognized as a common cause for admission in ICUs. In general, sepsis and many diseases lead to alterations of the metabolism of amino acids (AA), among them arginine (Ventura et al. Amino Acids 39:1417–1426, 2010) more especially. Indeed, in humans, sepsis is characterized by a substantial decrease in arginine pools. This decrease of arginine concentration is usually due to a major increase of its consumption and a decrease of its endogenous production leading to the concept of “arginine deficiency” (Ventura et al. Amino Acids 39:1417–1426, 2010). Hence, in sepsis, it is generally admitted that endogenous synthesis (i.e., arginine is a non-essential amino acid) cannot meet the needs and arginine becomes a conditionally essential AA (Pribis et al. JPEN J Parenter Enteral Nutr 36:53–59, 2012). This may have important consequences. As a matter of fact, arginine is not only a component of proteins but also a molecule that can generate a number of active metabolites (Fig. 12.1): arginine may be the precursor of nitric oxide (NO, which is essential for the immune system), of ornithine (which is recognized as a polyamine precursor), or of agmatine (which is a major regulator of cell functions). Moreover, arginine is an important element in muscle energy: after reacting with glycine and methionine, it allows the formation of creatine. Finally, arginine acts as a secretagogue (such as insulin, glucagon, growth hormones, prolactin, and catecholamines) (Wu. Amino Acids 37:1–17, 2009). This could explain why the impairment of arginine homeostasis in sepsis and several diseases can contribute to pathophysiological alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ventura G, Moinard C, Segaud F, Le Plenier S, Cynober L, De Bandt JP. Adaptative response of nitrogen metabolism in early endotoxemia: role of ornithine aminotransferase. Amino Acids. 2010;39:1417–26.

    Article  CAS  PubMed  Google Scholar 

  2. Pribis JP, Zhu X, Vodovotz Y, Ochoa JB. Systemic l-arginine depletion after a murine model of surgery or trauma. JPEN J Parenter Enteral Nutr. 2012;36:53–9.

    Google Scholar 

  3. Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17.

    Article  PubMed  Google Scholar 

  4. Castillo L, Chapman TE, Sanchez M, Yu YM, Burke JF, Ajami AM, Vogt J, Young VR. Plasma l-arginine and citrulline kinetics in adults given adequate and l-arginine-free diets. Proc Natl Acad Sci U S A. 1993;90:7749–53.

    Google Scholar 

  5. Kao CC, Bandi V, Guntupalli KK, Wu M, Castillo L, Jahoor F. l-Arginine, citrulline and nitric oxide metabolism in sepsis. Clin Sci. 2009;117:23–30.

    Google Scholar 

  6. Luiking YC, Poeze M, Ramsay G, Deutz NE. Reduced citrulline production in sepsis is related to diminished de novo l-arginine and nitric oxide production. Am J Clin Nutr. 2009;89:142–52.

    Google Scholar 

  7. Bahri S, Zerrouk N, Aussel C, Moinard C, Crenn P, Curis E, Chaumeil JC, Cynober L, Sfar S. Citrulline: from metabolism to therapeutic use. Nutrition. 2013;29:479–84.

    Article  CAS  PubMed  Google Scholar 

  8. de Betue CT, Deutz NE. Changes in l-arginine metabolism during sepsis and critical illness in children. Nestle Nutr Inst Workshop Ser. 2013;77:17–28.

    Google Scholar 

  9. Argaman Z, Young VR, Noviski N, Castillo-Rosas L, Lu XM, Zurakowski D, Cooper M, Davison C, Tharakan JF, Ajami A, Castillo L. l-Arginine and nitric oxide metabolism in critically ill septic pediatric patients. Crit Care Med. 2003;31:591–7.

    Google Scholar 

  10. Luiking YC, Hallemeesch MM, van de Poll MC, Dejong CH, de Jonge WJ, Lamers WH, Deutz NE. Reduced citrulline availability by OTC deficiency in mice is related to reduced nitric oxide production. Am J Physiol Endocrinol Metab. 2008;295:E1315–22.

    Article  CAS  PubMed  Google Scholar 

  11. Poeze M, Bruins MJ, Luiking YC, Deutz NE. Reduced caloric intake during endotoxemia reduces l-arginine availability and metabolism. Am J Clin Nutr. 2010;91:992–1001.

    Google Scholar 

  12. Leiper J, Vallance P. Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc Res. 1999;43:542–8.

    Article  CAS  PubMed  Google Scholar 

  13. Gough MS, Morgan MAM, Mack CM, Darling DC, Frasier LM, Doolin KP, Apostolakos MJ, Stewart JC, Graves BT, Arning E, Bottiglieri T, Mooney RA, Frampton MW, Pietropaoli AP. The ratio of l-arginine to dimethylarginines is reduced and predicts outcomes in patients with severe sepsis. Crit Care Med. 2011;39:1351–8.

    Google Scholar 

  14. Moinard C, Barbar S, Choisy C, Butel MJ, Bureau MF, Hasselmann M, Cynober L, Charrueau C. l-Arginine reduces bacterial invasion in head-injury rats: an in vivo evaluation by bioluminescence. Crit Care Med. 2012;40:278–80.

    Google Scholar 

  15. Clementi E, Brown GC, Feelisch M, Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A. 1998;95:7631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kelly E, Morris SM, Billiar TR. Nitric oxide, sepsis, and l-arginine metabolism. JPEN J Parenter Enteral Nutr. 1995;19:234–8.

    Google Scholar 

  17. Kröncke KD, Fehsel K, Kolb-Bachofen V. Inducible nitric oxide synthase and its product nitric oxide, a small molecule with complex biological activities. Biol Chem Hoppe Seyler. 1995;376:327–43.

    Article  PubMed  Google Scholar 

  18. Moinard C, Cynober L, De Bandt J-P. Polyamines: metabolism and implications in human diseases. Clin Nutr. 2005;24:184–97.

    Article  CAS  PubMed  Google Scholar 

  19. Raghavan SA, Dikshit M. Vascular regulation by the l-arginine metabolites, nitric oxide and agmatine. Pharmacol Res. 2004;49:397–414.

    Google Scholar 

  20. Satriano J, Schwartz D, Ishizuka S, et al. Suppression of inducible nitric oxide generation by agmatine aldehyde: beneficial effects in sepsis. J Cell Physiol. 2001;188:313–20.

    Article  CAS  PubMed  Google Scholar 

  21. Barbul A. l-Arginine: biochemistry, physiology, and therapeutic implications. J Parenter Enteral Nutr. 1986;10:227–38.

    Google Scholar 

  22. Witte MB, Barbul A. Role of nitric oxide in wound repair. Am J Surg. 2002;183:406–12.

    Article  CAS  PubMed  Google Scholar 

  23. Fujiwara T, Kanazawa S, Ichibori R, Tanigawa T, Magome T, Shingaki K, Miyata S, Tohyama M, Hosokawa K. l-Arginine stimulates fibroblast proliferation through the GPRC6A-ERK1/2 and PI3K/Akt pathway. PLoS One. 2014;9:e92168.

    Google Scholar 

  24. Tessari P, Cecchet D, Cosma A, Puricelli L, Millioni R, Vedovato M, Tiengo A. Insulin resistance of amino acid and protein metabolism in type 2 diabetes. Clin Nutr. 2011;30:267–72.

    Article  CAS  PubMed  Google Scholar 

  25. Belabed L, Senon G, Blanc M-C, Paillard A, Cynober L, Darquy S. The equivocal metabolic response to endotoxaemia in type 2 diabetic and obese ZDF rats. Diabetologia. 2006;49:1349–59.

    Article  CAS  PubMed  Google Scholar 

  26. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24:302–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bonhomme S, Belabed L, Blanc M-C, Neveux N, Cynober L, Darquy S. l-Arginine-supplemented enteral nutrition in critically ill diabetic and obese rats: a dose-ranging study evaluating nutritional status and macrophage function. Nutrition. 2013;29:305–12.

    Google Scholar 

  28. Breuillard C, Darquy S, Curis E, Neveux N, Garnier J-P, Cynober L, de Bandt J.P. Effects of a diabetes-specific enteral nutrition on nutritional and immune status of diabetic, obese, and endotoxemic rats: interest of a graded l-arginine supply. Crit Care Med. 2012;40:2423–30.

    Google Scholar 

  29. Patel JG, Nagar SP, Dalal AA. Indirect costs in chronic obstructive pulmonary disease: a review of the economic burden on employers and individuals in the United States. Int J Chron Obstruct Pulmon Dis. 2014;9:289–300.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Antonione R. Nutrition in cardiac and pulmonary disease. In: Sobotka L, editor. Basic in clinical nutrition. 4th ed. Prague: Galen; 2011. p. 485–93.

    Google Scholar 

  31. Jonker R, Deutz N, Erbland M, Anderson P, Engelen M. Whole body de novo l-arginine production and NO synthesis are reduced in COPD patients. Clin Nutr. 2013;32:S5–6.

    Google Scholar 

  32. Boutry C, Matsumoto H, Bos C, Moinard C, Cynober L, Yin Y, Tomé D, Blachier F. Decreased glutamate, glutamine and citrulline concentrations in plasma and muscle in endotoxemia cannot be reversed by glutamate or glutamine supplementation: a primary intestinal defect? Amino Acids. 2012;43:1485–98.

    Article  CAS  PubMed  Google Scholar 

  33. Muratsubaki H, Yamaki A. Profile of plasma amino acid levels in rats exposed to acute hypoxic hypoxia. Indian J Clin Biochem. 2011;26:416–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pera T, Zuidhof AB, Smit M, Menzen MH, Klein T, Flik G, Zaagsma J, Meurs H, Maarsingh H. Arginase inhibition prevents inflammation and remodeling in a Guinea pig model of chronic obstructive pulmonary disease. J Pharmacol Exp Ther. 2014;349:229–38.

    Article  CAS  PubMed  Google Scholar 

  35. Rutten EP, Engelen MP, Wouters EF, Schols AM, Deutz NE. Metabolic effects of glutamine and glutamate ingestion in healthy subjects and in persons with chronic obstructive pulmonary disease. Am J Clin Nutr. 2006;83:115–23.

    CAS  PubMed  Google Scholar 

  36. Ehre C, Ridley C, Thornton DJ. Cystic fibrosis: an inherited disease affecting mucin-producing organs. Int J Biochem Cell Biol. 2014;52:136–45.

    Google Scholar 

  37. Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med. 2003;168:918–51.

    Article  PubMed  Google Scholar 

  38. Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 2004;84:731–65.

    Article  CAS  PubMed  Google Scholar 

  39. Elphick HE, Demoncheaux EA, Ritson S, Higenbottam TW, Everard ML. Exhaled nitric oxide is reduced in infants with cystic fibrosis. Thorax. 2001;56:151–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grasemann H, Schwiertz R, Matthiesen S, Racké K, Ratjen F. Increased arginase activity in cystic fibrosis airways. Am J Respir Crit Care Med. 2005;172:1523–8.

    Article  PubMed  Google Scholar 

  41. Grasemann H, Al-Saleh S, Scott JA, Shehnaz D, Mehl A, Amin R, Rafii M, Pencharz P, Belik J, Ratjen F. Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with cystic fibrosis. Am J Respir Crit Care Med. 2011;183:1363–8.

    Article  CAS  PubMed  Google Scholar 

  42. Grasemann H, Schwiertz R, Grasemann C, Vester U, Racké K, Ratjen F. Decreased systemic bioavailability of l-arginine in patients with cystic fibrosis. Respir Res. 2006;7:87.

    Google Scholar 

  43. Engelen MPKJ, Com G, Luiking YC, Deutz NE. Stimulated nitric oxide production and l-arginine deficiency in children with cystic fibrosis with nutritional failure. J Pediatr. 2013;163:369–75.

    Google Scholar 

  44. Grasemann H, Pencharz B. l-Arginine metabolism in patients with cystic fibrosis. J Pediatr. 2013;163:317–9.

    Google Scholar 

  45. Grasemann H, Kurtz F, Ratjen F. Inhaled L-arginine improves exhaled nitric oxide and pulmonary function in patients with cystic fibrosis. Am J Respir Crit Care Med. 2006;174:208–12.

    Article  CAS  PubMed  Google Scholar 

  46. Ilies M, Di Costanzo L, North ML, Scott JA, Christianson DW. 2-aminoimidazole amino acids as inhibitors of the binuclear manganese metalloenzyme human arginase I. J Med Chem. 2010;53:4266–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. North MLN, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am J Physiol Lung Cell Mol Physiol. 2009;296:L911–20.

    Article  CAS  PubMed  Google Scholar 

  48. Zeki AA, Bratt JM, Rabowsky M, Last JA, Kenyon NJ. Simvastatin inhibits goblet cell hyperplasia and lung arginase in a mouse model of allergic asthma: a novel treatment for airway remodeling? Transl Res. 2010;156:335–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ahmad T, Mabalirajan U, Sharma A, Aich J, Makhija L, Ghosh B, Agrawal A. Simvastatin improves epithelial dysfunction and airway hyperresponsiveness: from asymmetric dimethyl-arginine to asthma. Am J Respir Cell Mol Biol. 2011;44:531–9.

    Article  CAS  PubMed  Google Scholar 

  50. Crombez EA, Cederbaum SD. Hyperargininemia due to liver arginase deficiency. Mol Genet Metab. 2005;84:243–51.

    Article  CAS  PubMed  Google Scholar 

  51. Leonard JV. disorders of the urea cycle and related enzymes. In: Fernandes J, Saudubray JM, Van Den Berghe G, Walters JH, editors. Inborn metabolic diseases—diagnosis and treatment. 4th ed. Berlin: Springer; 2006. p. 263–72.

    Google Scholar 

  52. Walker V. Ammonia toxicity and its prevention in inherited defects of the urea cycle. Diabetes Obes Metab. 2009;11:823–35.

    Article  CAS  PubMed  Google Scholar 

  53. Ogier de Baulny H, Schiff M, Dionisi-Vici C. Lysinuric protein intolerance (LPI): a multi organ disease by far more complex than a classic urea cycle disorder. Mol Genet Metab. 2012;106:12–7.

    Article  CAS  PubMed  Google Scholar 

  54. El-Hattab AW, Emrick LT, Craigen WJ, Scaglia F. Citrulline and l-arginine utility in treating nitric oxide deficiency in mitochondrial disorders. Mol Genet Metab. 2012;107:247–52.

    Google Scholar 

  55. El-Hattab AW, Emrick LT, Chanprasert S, Craigen WJ, Scaglia F. Mitochondria: role of citrulline and l-arginine supplementation in MELAS syndrome. Int J Biochem Cell Biol. 2014;48:85–91.

    Google Scholar 

  56. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lucotti PC, Setola E, Monti LD, Galluccio E, Costa S, Sandoli EP, Fermo I, Rabaiotti G, Gatti R, Piatti P. Beneficial effects of oral l-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab. 2006;291:E906–12.

    Article  CAS  PubMed  Google Scholar 

  58. Beleznai T, Feher A, Spielvogel D, Lansman SL, Bagi Z. Arginase 1 contributes to diminished coronary arteriolar dilation in patients with diabetes. Am J Physiol Heart Circ Physiol. 2011;300:H777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grönros J, Jung C, Lundberg JO, Cerrato R, Ostenson CG, Pernow J. Arginase inhibition restores in vivo coronary microvascular function in type 2 diabetic rats. Am J Physiol Heart Circ Physiol. 2011;300:H1174–81.

    Google Scholar 

  60. Okon EB, Chung AWY, Rauniyar P, Padilla E, Tejerina T, McManus BM, Luo H, van Breemen C. Compromised arterial function in human type 2 diabetic patients. Diabetes. 2005;54:2415–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Moinard PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moinard, C., Breuillard, C., Charrueau, C. (2017). l-Arginine Metabolism Impairment in Sepsis and Diseases: Causes and Consequences. In: Patel, V., Preedy, V., Rajendram, R. (eds) L-Arginine in Clinical Nutrition. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-26009-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26009-9_12

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-26007-5

  • Online ISBN: 978-3-319-26009-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics