Skip to main content

Polyolefins in Automotive Industry

  • Chapter
  • First Online:
Polyolefin Compounds and Materials

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Polyolefins in automobiles have experienced a great deal of interest in the last twenty years, and their applications have been increasing with a tendency of further growth compared with other materials used in automobiles. The major advantages of polyolefin materials are their functionality, cost-effective manufacturing methods, and comparatively lower fuel consumption. In automobiles, the polymeric materials can be used in the internal and external areas, in the engine section, and in the bodywork. Polyolefin can be shaped easily, their surface can be smooth, and they are chemically resistant, lighter than metals and glass, and are also good insulators. All these good properties make the polyolefin popular in the field of automotive industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Strumberger, A. Gospocic, C. Bartulic, Polymeric materials in automobiles. Promet Traffic-Traffico. 17(3) (2005)

    Google Scholar 

  2. C.Z. Liao, S.C. Tjong, J. Nanomater. 9, 3273–3279 (2010)

    Google Scholar 

  3. http://www.plastemart.com/upload/Literature/Global-polyethylene-PE-polypropylene-PP-polyolefins-slow%20in-2008.asp

  4. J.H. Southern, R.S. Porter, The properties of polyethylene crystallized under the orientation and pressure effects of a pressure capillary viscometer. J. Appl. Polym. Sci. 14(9), 2305–2317 (1970)

    Article  CAS  Google Scholar 

  5. T. Kanamoto, A. Tsuruta, K. Tanaka, M. Takeda, R.S. Porter, On ultra-high tensile modulus by drawing single crystal mats of high molecular weight polyethylene. Polym. J. 15(4), 327–329 (1983)

    Article  CAS  Google Scholar 

  6. https://polymers.lyondellbasell.com/portal/binary/com.vignette.vps.basell.BasellFileServl

  7. S. Takase, N. Shiraishi, Studies on composites from wood and polypropylenes II. J. Appl. Polym. Sci. 37(3), 645–659 (1989)

    Article  CAS  Google Scholar 

  8. J.M. Felix, P. Gatenholm, The nature of adhesion in composites of modified cellulose fibers and polypropylene. J. Appl. Polym. Sci. 42(3), 609–620 (1991)

    Article  CAS  Google Scholar 

  9. Y. Mi, X. Chen, Q. Guo, Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J. Appl. Polym. Sci. 64(7), 1267–1273 (1997)

    Article  CAS  Google Scholar 

  10. P. Mapleston, Mod. Plast. 73, 605–732 (1999)

    Google Scholar 

  11. L. Jilkén, G. Mälhammar, R. Seldén, The effect of mineral fillers on impact and tensile properties of polypropylene. Polym. Test. 10(5), 329–344 (1991)

    Article  Google Scholar 

  12. http://polymer-additives.specialchem.com/centers/polyolefin-reinforcement-enter/reinforced-polyolefins-for-automotive

  13. G. Liu, G. Qiu, Study on the mechanical and morphological properties of toughened polypropylene blends for automobile bumpers. Polym. Bull. 70(3), 849–857 (2013)

    Article  CAS  Google Scholar 

  14. S. Komarneni, Nanocomposites. J. Mater. Chem. 2(12), 1219–1230 (1992)

    Article  CAS  Google Scholar 

  15. L.M. Sherman, Plast. Technol. 52 (1999)

    Google Scholar 

  16. R. Westervelt, K. Walsh, Chem. Week (1999)

    Google Scholar 

  17. NIST, ATP Project Brief 97-02-0047 (1997)

    Google Scholar 

  18. H. Guggenbuhl, Die Weltsoche 9, 25 (1989)

    Google Scholar 

  19. M.T. Takemori, Polym. Eng. Sci. 19, 1104–1113 (1979)

    Article  CAS  Google Scholar 

  20. E.P. Giannelis, Polymer layered silicate nanocomposites. Adv. Mater. 8(1), 29–35 (1996)

    Article  CAS  Google Scholar 

  21. T. Kurauchi, A. Okada, T. Nomura, T. Nishio, S. Saegusa, R. Deguchi, SAE Tech. Paper Ser. 910, 584–599 (1991)

    Google Scholar 

  22. H.G. Karian, Plastics Engineering, vol. 51 (Marcel Dekker, New York, 1999)

    Google Scholar 

  23. R. Ottaviani, W. Rodgers, P. Fasulo, T. Pietrzyk, C. Buehler, Global SPETPO Conference, Sept 1999

    Google Scholar 

  24. Auto applications drive commercialization of nanocomposites. Plast. Addit. Compd. 4, 30–33 (2002)

    Google Scholar 

  25. C.Z. Liao, S.C. Tjong, J. Nanomater. 9, 3279–3341 (2010)

    Google Scholar 

  26. N. Kakarala, S. Shah, SPE Automotive TPO Global Conference (2000) , pp.147–158

    Google Scholar 

  27. M.P. Luda, G. Ragosta, P. Musto, D. Acierno, L. Di Maio, G. Camino, V. Nepote, Regenerative recycling of automotive polymer components: poly (propylene) based car bumpers. Macromol. Mater. Eng. 288(8), 613–620 (2003)

    Article  CAS  Google Scholar 

  28. R. Mehbubani, A. Khosroshashi, B. Taylor, S.P. Yanchek, US patent, 20140272343 A1 Publication number US20140272343 A1, US 14/216,444

    Google Scholar 

  29. Y. Du, Y. Ning, T. Kortschot, A. Mark, J. Mater. Sci. 2630–2639 (2014)

    Google Scholar 

  30. G.D. Potter, C. Grein, Borealis. Expr Polym. Lett. 8, 282–292 (2014)

    Google Scholar 

  31. I.M. Inuwaa, A. Hassana, D.-Y. Wangb, S.A. Samsudina, M.K. Mohamad Haafiza, C.S.L. Wongd, M. Jawaide. doi:10.1016/j.polymdegradstab.2014.08.025

    Google Scholar 

  32. S. Mohanty, S.K. Verma, S.K. Nayak, Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos. Sci. Technol. 66(3), 538–547 (2006)

    Article  CAS  Google Scholar 

  33. A. Bourmaud, C. Baley, Investigations on the recycling of hemp and sisal fibre reinforced polypropylene composites. Polym. Degrad. Stab. 92(6), 1034–1045 (2007)

    Article  CAS  Google Scholar 

  34. A. Bourmaud, C. Baley, Rigidity analysis of polypropylene/vegetal fibre composites after recycling. Polym. Degrad. Stab. 94(3), 297–305 (2009)

    Article  CAS  Google Scholar 

  35. A. Bourmaud, A. Le Duigou, C. Baley, What is the technical and environmental interest in reusing a recycled polypropylene–hemp fibre composite? Polym. Degrad. Stab. 96(10), 1732–1739 (2011)

    Article  CAS  Google Scholar 

  36. A. Le Duigou, I. Pillin, A. Bourmaud, P. Davies, C. Baley, Effect of recycling on mechanical behaviour of biocompostable flax/poly (l-lactide) composites. Compos. A Appl. Sci. Manuf. 39(9), 1471–1478 (2008)

    Article  Google Scholar 

  37. J. George, M.S. Sreekala, S. Thomas, A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci. 41(9), 1471–1485 (2001)

    Article  CAS  Google Scholar 

  38. D.R. Mulinari, H.J. Voorwald, M.O.H. Cioffi, M.L.C. da Silva, S.M. Luz, Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydr. Polym. 75(2), 317–321 (2009)

    Article  CAS  Google Scholar 

  39. D.R. Mulinari, H.J. Voorwald, M.O.H. Cioffi, M.L.C. da Silva, S.M. Luz, Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydr. Polym. 75(2), 317–321 (2009)

    Article  CAS  Google Scholar 

  40. M. Pracella, D. Chionna, I. Anguillesi, Z. Kulinski, E. Piorkowska, Functionalization, compatibilization and properties of polypropylene composites with hemp fibres. Compos. Sci. Technol. 66(13), 2218–2230 (2006)

    Article  CAS  Google Scholar 

  41. A. Bourmaud, C. Baley, Rigidity analysis of polypropylene/vegetal fibre composites after recycling. Polym. Degrad. Stab. 94(3), 297–305 (2009)

    Article  CAS  Google Scholar 

  42. S.B. Srahim, R.B. Cheikh, Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos. Sci. Technol. 67(1), 140–147 (2007)

    Article  Google Scholar 

  43. Y. Li, K.L. Pickering, R.L. Farrell, Analysis of green hemp fibre reinforced composites using bag retting and white rot fungal treatments. Ind. Crops Prod. 29(2), 420–426 (2009)

    Article  Google Scholar 

  44. S.H. Aziz, M.P. Ansell, The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1–polyester resin matrix. Compos. Sci. Technol. 64(9), 1219–1230 (2004)

    Article  CAS  Google Scholar 

  45. M.M. Haque, M. Hasan, M.S. Islam, M.E. Ali, Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour. Technol. 100(20), 4903–4906 (2009)

    Article  CAS  Google Scholar 

  46. H.A. Khalil, H. Ismail, H.D. Rozman, M.N. Ahmad, The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur. Polym. J. 37(5), 1037–1045 (2001)

    Article  CAS  Google Scholar 

  47. J. Harun, K. Abdan, K. Zaman, Rheological behaviour of injection moulded oil palm empty fruit bunch fibre–polypropylene composites: Effects of electron beam processing versus maleated polypropylene. Mol. Cryst. Liq. Cryst. 484(1), 134–500 (2008)

    Article  CAS  Google Scholar 

  48. X. Lu, M.Q. Zhang, M.Z. Rong, G. Shi, G.C. Yang, Self-reinforced melt processable composites of sisal. Compos. Sci. Technol. 63(2), 177–186 (2003)

    Article  CAS  Google Scholar 

  49. A. Keller, Compounding and mechanical properties of biodegradable hemp fibre composites. Compos. Sci. Technol. 63(9), 1307–1316 (2003)

    Article  CAS  Google Scholar 

  50. F.Z. Arrakhiz, M. El Achaby, M. Malha, M.O. Bensalah, O. Fassi-Fehri, R. Bouhfid, A. Qaiss, Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene. Mater. Des. 43, 200–205 (2013)

    Google Scholar 

  51. M.C.N. Yemele, A. Koubaa, A. Cloutier, P. Soulounganga, T. Stevanovic, M.P. Wolcott, Effects of hot water treatment of raw bark, coupling agent, and lubricants on properties of bark/HDPE composites. Ind. Crops Prod. 42, 50–56 (2013)

    Article  Google Scholar 

  52. M. Tajvidi, R.H. Falk, J.C. Hermanson, Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis. J. Appl. Polym. Sci. 101(6), 4341–4349 (2006)

    Article  CAS  Google Scholar 

  53. P.V. Joseph, G. Mathew, K. Joseph, G. Groeninckx, S. Thomas, Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Compos. A Appl. Sci. Manuf. 34(3), 275–290 (2003)

    Article  Google Scholar 

  54. C.A. Correa, C.A. Razzino, E. Hage, J. Thermoplast. Compos. Mater. 20(2010), 223–239 (2007)

    Google Scholar 

  55. Lux Research. The Nanotech Report 2004

    Google Scholar 

  56. M. Pöllänen, M. Suvanto, T. Pakkanen, Cellulose reinforced high density polyethylene composites—Morphology, mechanical and thermal expansion properties. Compos. Sci. Technol. 76, 21–28 (2013)

    Article  Google Scholar 

  57. A. Sdrobis, R.N. Darie, M. Totolin, G. Cazacu, C. Vasile, Low density polyethylene composites containing cellulose pulp fibers. Compos B. 43, 1873–1880 (2012)

    Google Scholar 

  58. Y. Liu, Y. Tao, X. Lv, Y. Zhang, M. Di, Study on the surface properties of wood/polyethylene composites treated under plasma. Appl. Surf. Sci. 257, 1112–1118 (2010)

    Article  CAS  Google Scholar 

  59. M. Khalid, C.T. Ratnam, T.G. Chuah, S. Ali, S.Y. Thomas, Choong a comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose. Mater. Des. 29, 173–178 (2008)

    Article  CAS  Google Scholar 

  60. S. Komarnenei, J. Mater. Chem. 2, 1219 (1992)

    Article  Google Scholar 

  61. L.M. Sherman, Plast. Technol. 52, 123–129 (1999)

    Google Scholar 

  62. R. Westervelt, K. Walsh, Chem. Week 24, 84–89 (1999)

    Google Scholar 

  63. NIST, ATP Project Brief 97-02-0047 (1997)

    Google Scholar 

  64. D.A. Grewell, A. Benatar, J.B. Park, Plastics and Composites Welding Handbook, vol 10 (2003)

    Google Scholar 

  65. C.Y. Wu, A. Mokhtarzadeh, M.Y. Rhew, A. Benatar, SPE, ANTEC 61th Annual Technical Conference (2003)

    Google Scholar 

  66. C.Y. Wu, L. Trevino, Vibration Welding of TPO, SPE, ANTEC 60th Annual Technical Conference (2002)

    Google Scholar 

  67. J. Park, J. Liddy, Effect of paint over spray for vibration and ultrasonic welding processes. SPE, ANTEC 62nd Annual Technical Conference (2004)

    Google Scholar 

  68. Y.S. Chen, A. Benatar, Infrared welding of polypropylene. SPE, ANTEC 53rd Annual Technical Conference (1995)

    Google Scholar 

  69. C.Y. Wu, M. Cherdron, D.M. Douglass, Laser welding of polypropylene to thermoplastic polyolefins. SPE, ANTEC 61th Annual Technical Conference (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabu Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chirayil, C.J., Joy, J., Maria, H.J., Krupa, I., Thomas, S. (2016). Polyolefins in Automotive Industry. In: Al-Ali AlMa'adeed, M., Krupa, I. (eds) Polyolefin Compounds and Materials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-25982-6_11

Download citation

Publish with us

Policies and ethics