Skip to main content

Omics in Chlamydomonas for Biofuel Production

Part of the Subcellular Biochemistry book series (SCBI,volume 86)

Abstract

In response to demands for sustainable domestic fuel sources, research into biofuels has become increasingly important. Many challenges face biofuels in their effort to replace petroleum fuels, but rational strain engineering of algae and photosynthetic organisms offers a great deal of promise. For decades, mutations and stress responses in photosynthetic microbiota were seen to result in production of exciting high-energy fuel molecules, giving hope but minor capability for design. However, ‘-omics’ techniques for visualizing entire cell processing has clarified biosynthesis and regulatory networks. Investigation into the promising production behaviors of the model organism C. reinhardtii and its mutants with these powerful techniques has improved predictability and understanding of the diverse, complex interactions within photosynthetic organisms. This new equipment has created an exciting new frontier for high-throughput, predictable engineering of photosynthetically produced carbon-neutral biofuels.

Keywords

  • Nutrient limitation
  • Triacylglycerols
  • Biohydrogen
  • Stress response
  • Gene discovery

*These authors contributed equally.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-25979-6_18
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-25979-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 18.1
Fig. 18.2
Fig. 18.3
Fig. 18.4

Abbreviations

ACCase:

Acetyl-CoA carboxylase, E.C. 6.4.1.2

ACK1:

Non-specific protein-tyrosine kinase, E.C. 2.7.10.2

ACK2:

(Acetyl-CoA carboxylase) kinase 2, E.C. 2.7.11.27

ADH1:

Alcohol dehydrogenase 1/Formaldehyde dehydrogenase (FDH1), E.C. 1.1.1.1

ADH2:

Alcohol dehydrogenase (NADP+), E.C. 1.1.1.2

ADH3:

Alcohol dehydrogenase Isoform, E.C. 1.1.1.1

ADP-Glc PPase:

ADP-glucose pyrophosphorylase, E.C. 2.7.7.27

DGAT:

Diacylglycerol acyltransferase, E.C. 2.3.1.20

FAS:

Fatty acid synthase, E.C. 2.3.1.85

GPAT:

Glycerol-3-phosphate acyltransferase, E.C. 2.3.1.15

HYD1:

Ferredoxin hydrogenase, E.C. 1.12.7.2

HYD2:

Ferredoxin hydrogenase Isoform, E.C. 1.12.7.2

ICL:

Isocitrate lyase, E.C. 4.1.3.1

LDH:

Lactate dehydrogenase, E.C. 1.1.1.27

LPAT:

Lysophosphatidic acid acyltransferase, E.C. 2.3.1.51

MCT:

Malonyl acyl carrier protein transferase, E.C. 2.3.1.39

MLDP:

Major lipid droplet protein

PAT1:

Phosphate acetyltransferase, E.C. 2.3.1.8

PAT2:

Phosphate acetyltransferase Isoform, E.C. 2.3.1.8

PDC3:

Pyruvate decarboxylase, E.C. 4.1.1.1

PDAT:

Phospholipid diacylglycerol acyltransferase, E.C. 2.3.1.158

PDH:

Pyruvate dehydrogenase, E.C. 1.2.1.51

PFL1:

Formate C-acetyltransferase, E.C. 2.3.1.54

DGAT1:

Diacylglycerol acyltransferase

DGTT1:

Diacylglycerol acyltransferase

GPD2:

Glycerol-3-phosphate dehydrogenase

GPD4:

Glycerol-3-phosphate dehydrogenase

LHCBM9:

Light Harvesting Complex Chlorophyll a-b binding protein

LHCSR2:

Light Harvesting Complex stress-related 2

LPAT1:

Lysophosphatidic acid acyltransferase

MLDP1:

Major lipid droplet protein

PDAT1:

Phospholipid diacylglycerol acyltransferase

DAG:

Diacylglycerol

FA:

Fatty acid

FDox:

Ferredoxin (oxidized)

FDred:

Ferredoxin (reduced)

G3P:

Glycerol-3-phosphate

PFR1ox:

Pyruvate ferredoxin (oxidized)

PFR1red:

Pyruvate ferredoxin (reduced)

SQDG:

Sulfoquinovovosyl diacylglycerol

TAG:

Triacylglycerol

Cytb6 :

Cytochrome b6 (small subunit of cytochrome b6f complex)

Cytf:

Cytochrome f (large subunit of cytochrome b6f complex)

Fd:

Ferredoxin

FNR:

Ferredoxin – NADP(+) reductase

LHC:

Light Harvesting Complex

NDH:

Plastidial NAD(P)H dehydrogenase complex

P680:

Chlorophyll a P680 (680 nm)

P700:

Chlorophyll a P700 (700 nm)

Pc:

Plastocyanin

PQ(H)2 :

Plastoquinone (reduced)

PSI:

Photosystem I

PSII:

Photosystem II

PQ0 :

Plastoquinone (oxidized)

2-DE:

2-Dimensional Gel Electrophoresis

GC/MS:

Gas Chromatography/Mass Spectroscopy

HS:

Heat Shock

LC/MS:

Liquid Chromatography/Mass Spectroscopy

MALDI:

Matrix-Assisted Laser Desorption/Ionization

NMR:

Nuclear Magnetic Resonance

MFA:

Metabolite Flux Analysis

TOF:

Time of Flight

References

  • Alves P, Arnold RY, Novotny MV, Radivojac P, Reilly JP, Tang H (2007) Advancement in protein inference from shotgun proteomics using peptide Detectability. Pac Symp Biocomput 12:409–420

    Google Scholar 

  • Ballicora MA, Iglesias AA, Preiss J (2003) ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67:213–225

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    CAS  CrossRef  PubMed  Google Scholar 

  • Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS (2013) Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25:4305–4323

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in chlamydomonas. J Biol Chem 287:15811–15825

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, Mccurdy S, Foy M, Ewan M (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    CAS  CrossRef  PubMed  Google Scholar 

  • Buléon A, Gallant DJ, Bouchet B, Mouille G, D’Hulst C, Kossmann J, Ball S (1997) Starches from a to C (chlamydomonas reinhardtii as a model microbial system to investigate the biosynthesis of the plant amylopectin crystal). Plant Physiol 115:949–957

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36:D623–D631

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Chen F, Johns MR (1996) Heterotrophic growth of chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem 31:601–604

    CAS  CrossRef  Google Scholar 

  • cole DG (1999) Kinesin-II, coming and going. J Cell Biol 147:463–466

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Croft MT, Moulin M, Webb ME, Smith AG (2007) Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci 104:20770–20775

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Curwen V, Eyras E, Andrews TD, Clarke L, Mongin E, Searle SM, Clamp M (2004) The Ensembl automatic gene annotation system. Genome Res 14:942–950

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC (2009) Flexibility in anaerobic metabolism as revealed in a mutant of chlamydomonas reinhardtii lacking Hydrogenase activity. J Biol Chem 284:7201–7213

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Edwards J, Ramakrishna R, Schilling C, Palsson B (1999) Metabolic flux balance analysis. Metab Eng (eds. Lee, S.Y. & Papoutsakis, E.T.) 13–57 (Marcel Dekker)

    Google Scholar 

  • Fishtik I, Alexander A, Datta R, Geana D (2000) A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions. Int J Hydrog Energy 25:31–45

    CAS  CrossRef  Google Scholar 

  • Förster B, Mathesius U, Pogson BJ (2006) Comparative proteomics of high light stress in the model alga chlamydomonas reinhardtii. Proteomics 6:4309–4320

    CrossRef  PubMed  Google Scholar 

  • González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell Online 22:2058–2084

    CrossRef  Google Scholar 

  • Gonzalez-Ballester D, Pootakham W, Mus F, Yang W, Catalanotti C, Magneschi L, De Montaigu A, Higuera JJ, Prior M, Galván A (2011) Reverse genetics in chlamydomonas: a platform for isolating insertional mutants. Plant Methods 7:1–13

    CrossRef  Google Scholar 

  • Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10:1592–1606

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Grewe S, Ballottari M, Alcocer M, D’Andrea C, Blifernez-Klassen O, Hankamer B, Mussgnug JH, Bassi R, Kruse O (2014) Light-harvesting complex protein LHCBM9 is critical for photosystem II activity and hydrogen production in chlamydomonas reinhardtii. Plant Cell Online 26:1598–1611

    CAS  CrossRef  Google Scholar 

  • Griffiths WJ, Wang W (2009) Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem Soc Rev 38:1882–1896

    CAS  CrossRef  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    CAS  CrossRef  PubMed  Google Scholar 

  • Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Biol 52:363–406

    CAS  CrossRef  Google Scholar 

  • Harris EH, Stern, D. (Ed.) (2009) The chlamydomonas sourcebook: introduction to chlamydomonas and its laboratory use. Academic Press, Oxford/Burlington, MA/San Diego

    Google Scholar 

  • Hemme D, Veyel D, Mühlhaus T, Sommer F, Jüppner J, Unger A-K, Sandmann M, Fehrle I, Schönfelder S, Steup M, Geimer S, Kopka J, Giavalico P, Schroda M (2014) Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydonomonas reinhardtii. Plant Cell 26:4270–4297

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    CAS  CrossRef  PubMed  Google Scholar 

  • Jamers A, Blust R, De Coen W (2009) Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat Toxicol 92:114–121

    CAS  CrossRef  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 78:53–68

    CAS  CrossRef  Google Scholar 

  • Kempa S, Hummel J, Schwemmer T, Pietzke M, Strehmel N, Wienkoop S, Kopka J, Weckwerth W (2009) An automated GCxGC‐TOF‐MS protocol for batch‐wise extraction and alignment of mass isotopomer matrixes from differential 13C‐labelling experiments: a case study for photoautotrophic‐mixotrophic grown chlamydomonas reinhardtii cells. J Basic Microbiol 49:82–91

    CAS  CrossRef  PubMed  Google Scholar 

  • Kropat J, Hong-Hermesdorf A, Casero D, Ent P, Castruita M, Pellegrini M, Merchant SS, Malasarn D (2011) A revised mineral nutrient supplement increases biomass and growth rate in chlamydomonas reinhardtii. Plant J 66:770–780

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kurian J (2005) A new polymer platform for the future — Sorona® from corn derived 1,3-propanediol. J Polym Environ 13:159–167

    CAS  CrossRef  Google Scholar 

  • Li H, Liao JC (2013) Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microbiol Cell Fact 12:4

    CAS  CrossRef  Google Scholar 

  • Li HH, Quinn J, Culler D, Girard-Bascou J, Merchant S (1996) Molecular genetic analysis of plastocyanin biosynthesis in chlamydomonas reinhardtii. J Biol Chem 271:31283–31289

    CAS  CrossRef  PubMed  Google Scholar 

  • Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010a) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387–391

    CrossRef  PubMed  Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, HU Q (2010b) Inhibition of starch synthesis results in overproduction of lipids in chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    CAS  CrossRef  PubMed  Google Scholar 

  • Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. Biomed Res Int 2012:11

    Google Scholar 

  • Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM (2009) The metabolome of chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci 74:560–564

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green AlgaChlamydomonas reinhardtii. Plant Physiol 122:127–136

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Team CA, Team JA, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of Key animal and plant functions. Science 318:245–251

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Michael S (1974) Homeoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci 71:522–525

    CrossRef  Google Scholar 

  • Miller R, Wu G, Deshpande RR, Vieler A, Gärtner K, Li X, Moellering ER, Zäuner S, Cornish AJ, Liu B, Bullard B, Sears BB, Kuo M-H, Hegg EL, Shachar-Hill Y, Shiu S-H, Benning C (2010) Changes in transcript abundance in chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in chlamydomonas reinhardtii. Eukaryot Cell 9:97–106

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Morgan AD, Ness RW, Keightley PD, Colegrave N (2014) Spontaneous mutation accumulation in multiple strains of the green alga, chlamydomonas reinhardtii. Evolution 68:2589–2602

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Morin RD, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh TJ, Mcdonald H, Varhol SJ, Marra MA (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques 45:81–94

    CAS  CrossRef  PubMed  Google Scholar 

  • Moseley J, Quinn J, Eriksson M, Merchant S (2000) The Crd1 gene encodes a putative di‐iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in chlamydomonas reinhardtii. EMBO J 19:2139–2151

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Moseley JL, Gonzalez-Ballester D, Pootakham W, Bailey S, Grossman AR (2009) Genetic interactions between regulators of chlamydomonas phosphorus and sulfur deprivation responses. Genetics 181:889–905

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in chlamydomonas reinhardtii: anoxic gene expression, Hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486

    CAS  CrossRef  PubMed  Google Scholar 

  • Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    CAS  CrossRef  PubMed  Google Scholar 

  • Navarro MAT, Guerra E, Fernández E, Galván A (2000) Nitrite reductase mutants as an approach to understanding nitrate assimilation in chlamydomonas reinhardtii. Plant Physiol 122:283–290

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Neupert J, Karcher D, Bock R (2009) Generation of chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57:1140–1150

    CAS  CrossRef  PubMed  Google Scholar 

  • Nguyen AV, Thomas-Hall SR, Malnoe A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM (2008) Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 7:1965–1979

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I (2014) The genome portal of the department of energy joint genome institute: 2014 updates. Nucleic Acids Res 42:D26–D31

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci 110(4):1249–1254

    Google Scholar 

  • Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2014) Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng 22:76–82

    CAS  CrossRef  PubMed  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, Mcinerney P, Thompson JF, Bowers J, Jarosz M, Milos PM (2009) Direct RNA sequencing. Nature 461:814–818

    CAS  CrossRef  PubMed  Google Scholar 

  • Pazour GJ, Dickert BL, Witman GB (1999a) The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol 144:473–481

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pazour GJ, Koutoulis A, Benashski SE, Dickert BL, Sheng H, Patel-King RS, King SM, Witman GB (1999b) LC2, the chlamydomonas homologue of the tComplex-encoded protein Tctex2, is essential for outer Dynein Arm assembly. Mol Biol Cell 10:3507–3520

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Qi J, Luo H, Hao B (2004) CVTree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res 32:W45–W47

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Quesada A, Hidalgo J, Fernandez E (1998) Three Nrt2 genes are differentially regulated in chlamydomonas reinhardtii. Mol Gen Genet MGG 258:373–377

    CAS  CrossRef  PubMed  Google Scholar 

  • Quiñones MA, Galván A, Fernández E, Aparicio PJ (1999) Blue‐light requirement for the biosynthesis of an NO2− transport system in the chlamydomonas reinhardtii nitrate transport mutant S10*. Plant Cell Environ 22:1169–1175

    CrossRef  Google Scholar 

  • Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89

    CAS  CrossRef  PubMed  Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124

    CAS  CrossRef  PubMed  Google Scholar 

  • Rusk N (2011) Torrents of sequence. Nat Methods 8:44–44

    Google Scholar 

  • Sanger F, Coulson A (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:447–448

    CrossRef  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Schmollinger S, Mühlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D, Hemme D, Pellegrini M, Grossman AR, Stitt M, Schroda M, Moseley JL (2014) Nitrogen-sparing mechanisms in chlamydomans affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26:1410–1435

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Shao N, Bock R (2008) A codon-optimized luciferase from gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga chlamydomonas reinhardtii. Curr Genet 53:381–388

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory (NREL), Golden, Colorado

    Google Scholar 

  • Shishkin AA, Giannoukos G, Kucukural A, Ciulla D, Busby M, Surka C, Chen J, Bhattacharyya RP, Rudy RF, Patel MM (2015) Simultaneous generation of many RNA-seq libraries in a single reaction. Nat Methods 12(4):323–325

    Google Scholar 

  • Specht M, Stanke M, Terashima M, Naumann‐Busch B, JANßEN I, Höhner R, Hom EF, Liang C, Hippler M (2011) Concerted action of the new genomic peptide finder and AUGUSTUS allows for automated proteogenomic annotation of the chlamydomonas reinhardtii genome. Proteomics 11:1814–1823

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Stephanopoulos G, Aristidou A, Nielsen J (1998) Metabolic engineering principles and methodologies. Marcel Dekker, New York/Basel

    Google Scholar 

  • Sugimoto K, Sato N, Tsuzuki M (2007) Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in chlamydomonas reinhardtii. FEBS Lett 581:4519–4522

    CAS  CrossRef  PubMed  Google Scholar 

  • Sugimoto K, Midorikawa T, Tsuzuki M, Sato N (2008) Upregulation of PG synthesis on sulfur-starvation for PS I in chlamydomonas. Biochem Biophys Res Commun 369:660–665

    CAS  CrossRef  PubMed  Google Scholar 

  • Surzycki R, Cournac L, Peltier G, Rochaix J-D (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci 104:17548–17553

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9:1514–1532

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Thompson JF, Steinmann KE (2010) Single molecule sequencing with a heliscope genetic analysis system. Curr Protocol Mol Biol 92:7.10:7.10–7.10.14

    Google Scholar 

  • Timmins M, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The Metabolome of chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425

    CrossRef  Google Scholar 

  • Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, Mckernan K (2008) A high-resolution, nucleosome position map of C. Elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051–1063

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wase N, Black PN, Stanley BA, Dirusso CC (2014) Integrated quantitative analysis of nitrogen stress response in chlamydomonas reinhardtii using metabolite and protein profiling. J Proteome Res 13:1373–1396

    CAS  CrossRef  PubMed  Google Scholar 

  • Weers PM, Gulati RD (1997) Growth and reproduction of daphnia galeata in response to changes in fatty acids, phosphorus, and nitrogen in chlamydomonas reinhardtii. Limnol Oceanogr 42:1584–1589

    CAS  CrossRef  Google Scholar 

  • Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    CAS  CrossRef  PubMed  Google Scholar 

  • Woessner J, Goodenough UW (1994) Volvocine cell walls and their constituent glycoproteins: an evolutionary perspective. Protoplasma 181:245–258

    CrossRef  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    CAS  CrossRef  PubMed  Google Scholar 

  • Zerbino DR (2010) Using the velvet de novo assembler for short‐read sequencing technologies. Curr Protocol Bioinform 12: Chapter: Unit-11.5

    Google Scholar 

  • Zhang Z, Shrager J, Jain M, Chang C-W, Vallon O, Grossman AR (2004) Insights into the survival of chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 3:1331–1348

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Zhou J-J, Fernández E, Galván A, Miller AJ (2000) A high affinity nitrate transport system from chlamydomonas requires two gene products. FEBS Lett 466:225–227

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanette R. Boyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aucoin, H.R., Gardner, J., Boyle, N.R. (2016). Omics in Chlamydomonas for Biofuel Production. In: Nakamura, Y., Li-Beisson, Y. (eds) Lipids in Plant and Algae Development. Subcellular Biochemistry, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-25979-6_18

Download citation