Lipids in Plant and Algae Development pp 447-469

Part of the Subcellular Biochemistry book series (SCBI, volume 86) | Cite as

Omics in Chlamydomonas for Biofuel Production

  • Hanna R. Aucoin
  • Joseph Gardner
  • Nanette R. Boyle

Abstract

In response to demands for sustainable domestic fuel sources, research into biofuels has become increasingly important. Many challenges face biofuels in their effort to replace petroleum fuels, but rational strain engineering of algae and photosynthetic organisms offers a great deal of promise. For decades, mutations and stress responses in photosynthetic microbiota were seen to result in production of exciting high-energy fuel molecules, giving hope but minor capability for design. However, ‘-omics’ techniques for visualizing entire cell processing has clarified biosynthesis and regulatory networks. Investigation into the promising production behaviors of the model organism C. reinhardtii and its mutants with these powerful techniques has improved predictability and understanding of the diverse, complex interactions within photosynthetic organisms. This new equipment has created an exciting new frontier for high-throughput, predictable engineering of photosynthetically produced carbon-neutral biofuels.

Keywords

Nutrient limitation Triacylglycerols Biohydrogen Stress response Gene discovery 

Abbreviations

Enzymes

ACCase

Acetyl-CoA carboxylase, E.C. 6.4.1.2

ACK1

Non-specific protein-tyrosine kinase, E.C. 2.7.10.2

ACK2

(Acetyl-CoA carboxylase) kinase 2, E.C. 2.7.11.27

ADH1

Alcohol dehydrogenase 1/Formaldehyde dehydrogenase (FDH1), E.C. 1.1.1.1

ADH2

Alcohol dehydrogenase (NADP+), E.C. 1.1.1.2

ADH3

Alcohol dehydrogenase Isoform, E.C. 1.1.1.1

ADP-Glc PPase

ADP-glucose pyrophosphorylase, E.C. 2.7.7.27

DGAT

Diacylglycerol acyltransferase, E.C. 2.3.1.20

FAS

Fatty acid synthase, E.C. 2.3.1.85

GPAT

Glycerol-3-phosphate acyltransferase, E.C. 2.3.1.15

HYD1

Ferredoxin hydrogenase, E.C. 1.12.7.2

HYD2

Ferredoxin hydrogenase Isoform, E.C. 1.12.7.2

ICL

Isocitrate lyase, E.C. 4.1.3.1

LDH

Lactate dehydrogenase, E.C. 1.1.1.27

LPAT

Lysophosphatidic acid acyltransferase, E.C. 2.3.1.51

MCT

Malonyl acyl carrier protein transferase, E.C. 2.3.1.39

MLDP

Major lipid droplet protein

PAT1

Phosphate acetyltransferase, E.C. 2.3.1.8

PAT2

Phosphate acetyltransferase Isoform, E.C. 2.3.1.8

PDC3

Pyruvate decarboxylase, E.C. 4.1.1.1

PDAT

Phospholipid diacylglycerol acyltransferase, E.C. 2.3.1.158

PDH

Pyruvate dehydrogenase, E.C. 1.2.1.51

PFL1

Formate C-acetyltransferase, E.C. 2.3.1.54

Transcripts

DGAT1

Diacylglycerol acyltransferase

DGTT1

Diacylglycerol acyltransferase

GPD2

Glycerol-3-phosphate dehydrogenase

GPD4

Glycerol-3-phosphate dehydrogenase

LHCBM9

Light Harvesting Complex Chlorophyll a-b binding protein

LHCSR2

Light Harvesting Complex stress-related 2

LPAT1

Lysophosphatidic acid acyltransferase

MLDP1

Major lipid droplet protein

PDAT1

Phospholipid diacylglycerol acyltransferase

Molecules

DAG

Diacylglycerol

FA

Fatty acid

FDox

Ferredoxin (oxidized)

FDred

Ferredoxin (reduced)

G3P

Glycerol-3-phosphate

PFR1ox

Pyruvate ferredoxin (oxidized)

PFR1red

Pyruvate ferredoxin (reduced)

SQDG

Sulfoquinovovosyl diacylglycerol

TAG

Triacylglycerol

Structures and Proteins

Cytb6

Cytochrome b6 (small subunit of cytochrome b6f complex)

Cytf

Cytochrome f (large subunit of cytochrome b6f complex)

Fd

Ferredoxin

FNR

Ferredoxin – NADP(+) reductase

LHC

Light Harvesting Complex

NDH

Plastidial NAD(P)H dehydrogenase complex

P680

Chlorophyll a P680 (680 nm)

P700

Chlorophyll a P700 (700 nm)

Pc

Plastocyanin

PQ(H)2

Plastoquinone (reduced)

PSI

Photosystem I

PSII

Photosystem II

PQ0

Plastoquinone (oxidized)

Miscellaneous

2-DE

2-Dimensional Gel Electrophoresis

GC/MS

Gas Chromatography/Mass Spectroscopy

HS

Heat Shock

LC/MS

Liquid Chromatography/Mass Spectroscopy

MALDI

Matrix-Assisted Laser Desorption/Ionization

NMR

Nuclear Magnetic Resonance

MFA

Metabolite Flux Analysis

TOF

Time of Flight

References

  1. Alves P, Arnold RY, Novotny MV, Radivojac P, Reilly JP, Tang H (2007) Advancement in protein inference from shotgun proteomics using peptide Detectability. Pac Symp Biocomput 12:409–420Google Scholar
  2. Ballicora MA, Iglesias AA, Preiss J (2003) ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67:213–225CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271CrossRefPubMedGoogle Scholar
  4. Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS (2013) Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25:4305–4323CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in chlamydomonas. J Biol Chem 287:15811–15825CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, Mccurdy S, Foy M, Ewan M (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634CrossRefPubMedGoogle Scholar
  7. Buléon A, Gallant DJ, Bouchet B, Mouille G, D’Hulst C, Kossmann J, Ball S (1997) Starches from a to C (chlamydomonas reinhardtii as a model microbial system to investigate the biosynthesis of the plant amylopectin crystal). Plant Physiol 115:949–957CrossRefPubMedPubMedCentralGoogle Scholar
  8. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36:D623–D631CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen F, Johns MR (1996) Heterotrophic growth of chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem 31:601–604CrossRefGoogle Scholar
  10. cole DG (1999) Kinesin-II, coming and going. J Cell Biol 147:463–466CrossRefPubMedPubMedCentralGoogle Scholar
  11. Croft MT, Moulin M, Webb ME, Smith AG (2007) Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci 104:20770–20775CrossRefPubMedPubMedCentralGoogle Scholar
  12. Curwen V, Eyras E, Andrews TD, Clarke L, Mongin E, Searle SM, Clamp M (2004) The Ensembl automatic gene annotation system. Genome Res 14:942–950CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC (2009) Flexibility in anaerobic metabolism as revealed in a mutant of chlamydomonas reinhardtii lacking Hydrogenase activity. J Biol Chem 284:7201–7213CrossRefPubMedPubMedCentralGoogle Scholar
  14. Edwards J, Ramakrishna R, Schilling C, Palsson B (1999) Metabolic flux balance analysis. Metab Eng (eds. Lee, S.Y. & Papoutsakis, E.T.) 13–57 (Marcel Dekker)Google Scholar
  15. Fishtik I, Alexander A, Datta R, Geana D (2000) A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions. Int J Hydrog Energy 25:31–45CrossRefGoogle Scholar
  16. Förster B, Mathesius U, Pogson BJ (2006) Comparative proteomics of high light stress in the model alga chlamydomonas reinhardtii. Proteomics 6:4309–4320CrossRefPubMedGoogle Scholar
  17. González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell Online 22:2058–2084CrossRefGoogle Scholar
  18. Gonzalez-Ballester D, Pootakham W, Mus F, Yang W, Catalanotti C, Magneschi L, De Montaigu A, Higuera JJ, Prior M, Galván A (2011) Reverse genetics in chlamydomonas: a platform for isolating insertional mutants. Plant Methods 7:1–13CrossRefGoogle Scholar
  19. Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10:1592–1606CrossRefPubMedPubMedCentralGoogle Scholar
  20. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186CrossRefPubMedPubMedCentralGoogle Scholar
  21. Grewe S, Ballottari M, Alcocer M, D’Andrea C, Blifernez-Klassen O, Hankamer B, Mussgnug JH, Bassi R, Kruse O (2014) Light-harvesting complex protein LHCBM9 is critical for photosystem II activity and hydrogen production in chlamydomonas reinhardtii. Plant Cell Online 26:1598–1611CrossRefGoogle Scholar
  22. Griffiths WJ, Wang W (2009) Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem Soc Rev 38:1882–1896CrossRefPubMedGoogle Scholar
  23. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512CrossRefPubMedGoogle Scholar
  24. Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Biol 52:363–406CrossRefGoogle Scholar
  25. Harris EH, Stern, D. (Ed.) (2009) The chlamydomonas sourcebook: introduction to chlamydomonas and its laboratory use. Academic Press, Oxford/Burlington, MA/San DiegoGoogle Scholar
  26. Hemme D, Veyel D, Mühlhaus T, Sommer F, Jüppner J, Unger A-K, Sandmann M, Fehrle I, Schönfelder S, Steup M, Geimer S, Kopka J, Giavalico P, Schroda M (2014) Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydonomonas reinhardtii. Plant Cell 26:4270–4297CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefPubMedGoogle Scholar
  28. Jamers A, Blust R, De Coen W (2009) Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat Toxicol 92:114–121CrossRefPubMedGoogle Scholar
  29. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  30. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 78:53–68CrossRefGoogle Scholar
  31. Kempa S, Hummel J, Schwemmer T, Pietzke M, Strehmel N, Wienkoop S, Kopka J, Weckwerth W (2009) An automated GCxGC‐TOF‐MS protocol for batch‐wise extraction and alignment of mass isotopomer matrixes from differential 13C‐labelling experiments: a case study for photoautotrophic‐mixotrophic grown chlamydomonas reinhardtii cells. J Basic Microbiol 49:82–91CrossRefPubMedGoogle Scholar
  32. Kropat J, Hong-Hermesdorf A, Casero D, Ent P, Castruita M, Pellegrini M, Merchant SS, Malasarn D (2011) A revised mineral nutrient supplement increases biomass and growth rate in chlamydomonas reinhardtii. Plant J 66:770–780CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kurian J (2005) A new polymer platform for the future — Sorona® from corn derived 1,3-propanediol. J Polym Environ 13:159–167CrossRefGoogle Scholar
  34. Li H, Liao JC (2013) Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microbiol Cell Fact 12:4CrossRefGoogle Scholar
  35. Li HH, Quinn J, Culler D, Girard-Bascou J, Merchant S (1996) Molecular genetic analysis of plastocyanin biosynthesis in chlamydomonas reinhardtii. J Biol Chem 271:31283–31289CrossRefPubMedGoogle Scholar
  36. Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010a) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387–391CrossRefPubMedGoogle Scholar
  37. Li Y, Han D, Hu G, Sommerfeld M, HU Q (2010b) Inhibition of starch synthesis results in overproduction of lipids in chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268CrossRefPubMedGoogle Scholar
  38. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. Biomed Res Int 2012:11Google Scholar
  39. Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM (2009) The metabolome of chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425CrossRefPubMedPubMedCentralGoogle Scholar
  40. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci 74:560–564CrossRefPubMedPubMedCentralGoogle Scholar
  41. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green AlgaChlamydomonas reinhardtii. Plant Physiol 122:127–136CrossRefPubMedPubMedCentralGoogle Scholar
  42. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Team CA, Team JA, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of Key animal and plant functions. Science 318:245–251CrossRefPubMedPubMedCentralGoogle Scholar
  43. Michael S (1974) Homeoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci 71:522–525CrossRefGoogle Scholar
  44. Miller R, Wu G, Deshpande RR, Vieler A, Gärtner K, Li X, Moellering ER, Zäuner S, Cornish AJ, Liu B, Bullard B, Sears BB, Kuo M-H, Hegg EL, Shachar-Hill Y, Shiu S-H, Benning C (2010) Changes in transcript abundance in chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752CrossRefPubMedPubMedCentralGoogle Scholar
  45. Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in chlamydomonas reinhardtii. Eukaryot Cell 9:97–106CrossRefPubMedPubMedCentralGoogle Scholar
  46. Morgan AD, Ness RW, Keightley PD, Colegrave N (2014) Spontaneous mutation accumulation in multiple strains of the green alga, chlamydomonas reinhardtii. Evolution 68:2589–2602CrossRefPubMedPubMedCentralGoogle Scholar
  47. Morin RD, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh TJ, Mcdonald H, Varhol SJ, Marra MA (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques 45:81–94CrossRefPubMedGoogle Scholar
  48. Moseley J, Quinn J, Eriksson M, Merchant S (2000) The Crd1 gene encodes a putative di‐iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in chlamydomonas reinhardtii. EMBO J 19:2139–2151CrossRefPubMedPubMedCentralGoogle Scholar
  49. Moseley JL, Gonzalez-Ballester D, Pootakham W, Bailey S, Grossman AR (2009) Genetic interactions between regulators of chlamydomonas phosphorus and sulfur deprivation responses. Genetics 181:889–905CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in chlamydomonas reinhardtii: anoxic gene expression, Hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486CrossRefPubMedGoogle Scholar
  51. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459CrossRefPubMedGoogle Scholar
  52. Navarro MAT, Guerra E, Fernández E, Galván A (2000) Nitrite reductase mutants as an approach to understanding nitrate assimilation in chlamydomonas reinhardtii. Plant Physiol 122:283–290CrossRefPubMedPubMedCentralGoogle Scholar
  53. Neupert J, Karcher D, Bock R (2009) Generation of chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57:1140–1150CrossRefPubMedGoogle Scholar
  54. Nguyen AV, Thomas-Hall SR, Malnoe A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM (2008) Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 7:1965–1979CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, Smirnova T, Grigoriev IV, Dubchak I (2014) The genome portal of the department of energy joint genome institute: 2014 updates. Nucleic Acids Res 42:D26–D31CrossRefPubMedPubMedCentralGoogle Scholar
  56. Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci 110(4):1249–1254Google Scholar
  57. Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2014) Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng 22:76–82CrossRefPubMedGoogle Scholar
  58. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, Mcinerney P, Thompson JF, Bowers J, Jarosz M, Milos PM (2009) Direct RNA sequencing. Nature 461:814–818CrossRefPubMedGoogle Scholar
  60. Pazour GJ, Dickert BL, Witman GB (1999a) The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol 144:473–481CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pazour GJ, Koutoulis A, Benashski SE, Dickert BL, Sheng H, Patel-King RS, King SM, Witman GB (1999b) LC2, the chlamydomonas homologue of the tComplex-encoded protein Tctex2, is essential for outer Dynein Arm assembly. Mol Biol Cell 10:3507–3520CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151:709–718CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135CrossRefPubMedPubMedCentralGoogle Scholar
  64. Qi J, Luo H, Hao B (2004) CVTree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res 32:W45–W47CrossRefPubMedPubMedCentralGoogle Scholar
  65. Quesada A, Hidalgo J, Fernandez E (1998) Three Nrt2 genes are differentially regulated in chlamydomonas reinhardtii. Mol Gen Genet MGG 258:373–377CrossRefPubMedGoogle Scholar
  66. Quiñones MA, Galván A, Fernández E, Aparicio PJ (1999) Blue‐light requirement for the biosynthesis of an NO2− transport system in the chlamydomonas reinhardtii nitrate transport mutant S10*. Plant Cell Environ 22:1169–1175CrossRefGoogle Scholar
  67. Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem 242:84–89CrossRefPubMedGoogle Scholar
  68. Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124CrossRefPubMedGoogle Scholar
  69. Rusk N (2011) Torrents of sequence. Nat Methods 8:44–44Google Scholar
  70. Sanger F, Coulson A (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:447–448CrossRefGoogle Scholar
  71. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schmollinger S, Mühlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D, Hemme D, Pellegrini M, Grossman AR, Stitt M, Schroda M, Moseley JL (2014) Nitrogen-sparing mechanisms in chlamydomans affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26:1410–1435CrossRefPubMedPubMedCentralGoogle Scholar
  73. Shao N, Bock R (2008) A codon-optimized luciferase from gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga chlamydomonas reinhardtii. Curr Genet 53:381–388CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory (NREL), Golden, ColoradoGoogle Scholar
  75. Shishkin AA, Giannoukos G, Kucukural A, Ciulla D, Busby M, Surka C, Chen J, Bhattacharyya RP, Rudy RF, Patel MM (2015) Simultaneous generation of many RNA-seq libraries in a single reaction. Nat Methods 12(4):323–325Google Scholar
  76. Specht M, Stanke M, Terashima M, Naumann‐Busch B, JANßEN I, Höhner R, Hom EF, Liang C, Hippler M (2011) Concerted action of the new genomic peptide finder and AUGUSTUS allows for automated proteogenomic annotation of the chlamydomonas reinhardtii genome. Proteomics 11:1814–1823CrossRefPubMedPubMedCentralGoogle Scholar
  77. Stephanopoulos G, Aristidou A, Nielsen J (1998) Metabolic engineering principles and methodologies. Marcel Dekker, New York/BaselGoogle Scholar
  78. Sugimoto K, Sato N, Tsuzuki M (2007) Utilization of a chloroplast membrane sulfolipid as a major internal sulfur source for protein synthesis in the early phase of sulfur starvation in chlamydomonas reinhardtii. FEBS Lett 581:4519–4522CrossRefPubMedGoogle Scholar
  79. Sugimoto K, Midorikawa T, Tsuzuki M, Sato N (2008) Upregulation of PG synthesis on sulfur-starvation for PS I in chlamydomonas. Biochem Biophys Res Commun 369:660–665CrossRefPubMedGoogle Scholar
  80. Surzycki R, Cournac L, Peltier G, Rochaix J-D (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci 104:17548–17553CrossRefPubMedPubMedCentralGoogle Scholar
  81. Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9:1514–1532CrossRefPubMedPubMedCentralGoogle Scholar
  82. Thompson JF, Steinmann KE (2010) Single molecule sequencing with a heliscope genetic analysis system. Curr Protocol Mol Biol 92:7.10:7.10–7.10.14Google Scholar
  83. Timmins M, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The Metabolome of chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425CrossRefGoogle Scholar
  84. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, Mckernan K (2008) A high-resolution, nucleosome position map of C. Elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18:1051–1063CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wase N, Black PN, Stanley BA, Dirusso CC (2014) Integrated quantitative analysis of nitrogen stress response in chlamydomonas reinhardtii using metabolite and protein profiling. J Proteome Res 13:1373–1396CrossRefPubMedGoogle Scholar
  87. Weers PM, Gulati RD (1997) Growth and reproduction of daphnia galeata in response to changes in fatty acids, phosphorus, and nitrogen in chlamydomonas reinhardtii. Limnol Oceanogr 42:1584–1589CrossRefGoogle Scholar
  88. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206CrossRefPubMedGoogle Scholar
  89. Woessner J, Goodenough UW (1994) Volvocine cell walls and their constituent glycoproteins: an evolutionary perspective. Protoplasma 181:245–258CrossRefGoogle Scholar
  90. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261CrossRefPubMedPubMedCentralGoogle Scholar
  91. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452CrossRefPubMedGoogle Scholar
  92. Zerbino DR (2010) Using the velvet de novo assembler for short‐read sequencing technologies. Curr Protocol Bioinform 12: Chapter: Unit-11.5Google Scholar
  93. Zhang Z, Shrager J, Jain M, Chang C-W, Vallon O, Grossman AR (2004) Insights into the survival of chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 3:1331–1348CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zhou J-J, Fernández E, Galván A, Miller AJ (2000) A high affinity nitrate transport system from chlamydomonas requires two gene products. FEBS Lett 466:225–227CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hanna R. Aucoin
    • 1
  • Joseph Gardner
    • 1
  • Nanette R. Boyle
    • 1
  1. 1.Department of Chemical and Biological EngineeringColorado School of MinesGoldenUSA

Personalised recommendations