Labeled Faces in the Wild: A Survey

  • Erik Learned-Miller
  • Gary B. Huang
  • Aruni RoyChowdhury
  • Haoxiang Li
  • Gang Hua
Chapter

Abstract

In 2007, Labeled Faces in the Wild was released in an effort to spur research in face recognition, specifically for the problem of face verification with unconstrained images. Since that time, more than 50 papers have been published that improve upon this benchmark in some respect. A remarkably wide variety of innovative methods have been developed to overcome the challenges presented in this database. As performance on some aspects of the benchmark approaches 100 % accuracy, it seems appropriate to review this progress, derive what general principles we can from these works, and identify key future challenges in face recognition. In this survey, we review the contributions to LFW for which the authors have provided results to the curators (results found on the LFW results web page). We also review the cross cutting topic of alignment and how it is used in various methods. We end with a brief discussion of recent databases designed to challenge the next generation of face recognition algorithms.

References

  1. 1.
    betaface.com, http://betaface.com (2015)
  2. 2.
    inksy.so, http://www.insky.so/ (2015)
  3. 3.
    Omron from Okao Vision, http://www.omron.com/technology/index.html (2009)
  4. 4.
    Taiwan Colour & Imaging Technology (TCIT), http://www.tcit-us.com/ (2014)
  5. 5.
    Uni-ubi, http://uni-ubi.com (2015)
  6. 6.
    Visionlabs ver. 1.0, http://www.visionlabs.ru/face-recognition (2014)
  7. 7.
    Aurora Computer Services Ltd: Aurora-c-2014-1, http://www.facerec.com/ (2014)
  8. 8.
    Tencent-Bestimage, http://bestimage.qq.com (2014)
  9. 9.
    S.R. Arashloo, J. Kittler, Efficient processing of MRFs for unconstrained-pose face recognition, in 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS) (IEEE, Washington, 2013), pp. 1–8CrossRefGoogle Scholar
  10. 10.
    A. Asthana, M.J. Jones, T.K. Marks, K.H. Tieu, R. Goecke, Pose normalization via learned 2D warping for fully automatic face recognition, in The British Machine Vision Conference, Citeseer, 2011Google Scholar
  11. 11.
    A. Asthana, T.K. Marks, M.J. Jones, K.H. Tieu, M. Rohith, Fully automatic pose-invariant face recognition via 3D pose normalization, in 2011 IEEE International Conference on Computer Vision (ICCV) (IEEE, Washington, 2011), pp. 937–944Google Scholar
  12. 12.
    O. Barkan, J. Weill, L. Wolf, H. Aronowitz, Fast high dimensional vector multiplication face recognition, in 2013 IEEE International Conference on Computer Vision (ICCV) (IEEE, Washington, 2013), pp. 1960–1967CrossRefGoogle Scholar
  13. 13.
    E.Bart, S.Ullman, Class-based feature matching across unrestricted transformations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1618–1631 (2008)CrossRefGoogle Scholar
  14. 14.
    P.N. Belhumeur, D.W. Jacobs, D.J. Kriegman, N. Kumar, Localizing parts of faces using a consensus of exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2930–2940 (2013)CrossRefGoogle Scholar
  15. 15.
    P.N. Belhumeur D.J. Kriegman, What is the set of images of an object under all possible illumination conditions? Int. J. Comput. Vis. 28(3),245–260 (1998)CrossRefGoogle Scholar
  16. 16.
    T. Berg, P.N. Belhumeur, Tom-vs-Pete classifiers and identity-preserving alignment for face verification, in The British Machine Vision Conference, vol. 2, Citeseer (2012), p. 7Google Scholar
  17. 17.
    T. Berg, P.N. Belhumeur, POOF: part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2013), pp. 955–962Google Scholar
  18. 18.
    T.L. Berg, A.C. Berg, J. Edwards, D.A. Forsyth, Who’s in the picture? in Neural Information Processing Systems, 2005Google Scholar
  19. 19.
    T.L. Berg, A.C. Berg, J. Edwards, M. Maire, R. White, Y.-W. Teh, E. Learned-Miller, D.A. Forsyth, Names and faces in the news, in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004 (CVPR 2004), vol. 2 (IEEE, Washington, 2004), p. II-848Google Scholar
  20. 20.
    L. Best-Rowden, H. Han, C. Otto, B.F. Klare, A.K. Jain, Unconstrained face recognition: identifying a person of interest from a media collection. IEEE Trans. Inf. Forensics Secur. 9(12), 2144–2157 (2014)CrossRefGoogle Scholar
  21. 21.
    D. Beymer, T. Poggio, Face recognition from one example view, in Proceedings of the Fifth International Conference on Computer Vision, 1995 (IEEE, Washington, 1995), pp. 500–507Google Scholar
  22. 22.
    B. Bhattarai, G. Sharma, F. Jurie, P.Pérez, Some faces are more equal than others: hierarchical organization for accurate and efficient large-scale identity-based face retrieval, in Computer Vision-ECCV 2014 Workshops (Springer, Heidelberg, 2014), pp. 160–172Google Scholar
  23. 23.
    Q. Cao, Y. Ying, P. Li, Similarity metric learning for face recognition, in 2013 IEEE International Conference on Computer Vision (ICCV) (IEEE, Washington, 2013), pp. 2408–2415Google Scholar
  24. 24.
    X. Cao, Y. Wei, F. Wen, J. Sun, Face alignment by explicit shape regression. Int. J. Comput. Vis. 107(2), 177–190 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    X. Cao, D. Wipf, F. Wen, G. Duan, J. Sun, A practical transfer learning algorithm for face verification, in 2013 IEEE International Conference on Computer Vision (ICCV) (IEEE, Washington, 2013), pp. 3208–3215CrossRefGoogle Scholar
  26. 26.
    Z. Cao, Q. Yin, X. Tang, J. Sun, Face recognition with learning-based descriptor, in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2010), pp. 2707–2714CrossRefGoogle Scholar
  27. 27.
    T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, Y. Ma, PCANet: a simple deep learning baseline for image classification?. IEEE Tran. Image Process. 24(12), 5017–5032 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    D. Chen, X. Cao, L. Wang, F. Wen, J. Sun, Bayesian face revisited: a joint formulation, in Computer Vision—ECCV 2012 (Springer, Heidelberg, 2012), pp. 566–579Google Scholar
  29. 29.
    D. Chen, X. Cao, F. Wen, J. Sun, Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2013), pp. 3025–3032Google Scholar
  30. 30.
    S. Chopra, R. Hadsell, Y. LeCun, Learning a similarity metric discriminatively, with application to face verification, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 (CVPR 2005), vol. 1 (IEEE, Washington, 2005), pp. 539–546Google Scholar
  31. 31.
    D. Cox, N. Pinto, Beyond simple features: a large-scale feature search approach to unconstrained face recognition, in 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011) (IEEE, Washington, 2011), pp. 8–15Google Scholar
  32. 32.
    Z. Cui, W. Li, D. Xu, S. Shan, X. Chen, Fusing robust face region descriptors via multiple metric learning for face recognition in the wild, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2013), pp. 3554–3561Google Scholar
  33. 33.
    M. Everingham, J. Sivic, A. Zisserman, “Hello! My name is…Buffy”—Automatic naming of characters in TV video, in The British Machine Vision Conference, vol. 2 (2006), p. 6Google Scholar
  34. 34.
    H. Fan, Z. Cao, Y. Jiang, Q. Yin, C. Doudou, Learning deep face representation (2014). ArXiv preprint arXiv:1403.2802Google Scholar
  35. 35.
    L. Fei-Fei, R. Fergus, P. Perona, One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)CrossRefGoogle Scholar
  36. 36.
    A. Ferencz, E.G. Learned-Miller, J. Malik, Building a classification cascade for visual identification from one example, in Tenth IEEE International Conference on Computer Vision, 2005 (ICCV 2005), vol. 1 (IEEE, Washington, 2005), pp. 286–293Google Scholar
  37. 37.
    Y. Freund, S. Dasgupta, M. Kabra, N. Verma, Learning the structure of manifolds using random projections, in Advances in Neural Information Processing Systems (2007), pp. 473–480Google Scholar
  38. 38.
    R. Gross, I. Matthews, J. Cohn, T. Kanade, S. Baker, Multi-PIE. Image Vis. Comput. 28(5), 807–813 (2010)CrossRefGoogle Scholar
  39. 39.
    M. Guillaumin, J. Verbeek, C. Schmid, Is that you? Metric learning approaches for face identification, in 2009 IEEE 12th International Conference on Computer Vision (IEEE, Washington, 2009), pp. 498–505CrossRefGoogle Scholar
  40. 40.
    T. Hassner, S. Harel, E. Paz, R. Enbar, Effective face frontalization in unconstrained images (2014). ArXiv preprint arXiv:1411.7964Google Scholar
  41. 41.
    J. Hu, J. Lu, Y.-P. Tan, Discriminative deep metric learning for face verification in the wild, in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2014), pp. 1875–1882CrossRefGoogle Scholar
  42. 42.
    J. Hu, J. Lu, J. Yuan, Y.-P. Tan, Large margin multimetric learning for face and kinship verification in the wild, in Proc. ACCV, 2014Google Scholar
  43. 43.
    C. Huang, S. Zhu, K. Yu, Large scale strongly supervised ensemble metric learning, with applications to face verification and retrieval (2012). ArXiv preprint arXiv:1212.6094Google Scholar
  44. 44.
    G. Huang, M. Mattar, H. Lee, E.G. Learned-Miller, Learning to align from scratch, in Advances in Neural Information Processing Systems (2012), pp. 764–772Google Scholar
  45. 45.
    G.B. Huang, V. Jain, E. Learned-Miller. Unsupervised joint alignment of complex images, in IEEE International Conference on Computer Vision (ICCV) (IEEE, Washington, 2007), pp. 1–8Google Scholar
  46. 46.
    G.B. Huang, M.J. Jones, E. Learned-Miller, LFW results using a combined Nowak plus MERL recognizer, in Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, 2008Google Scholar
  47. 47.
    G.B. Huang, E. Learned-Miller, Labeled faces in the wild: updates and new reporting procedures. Technical Report UM-CS-2014-003, University of Massachusetts, Amherst (May 2014)Google Scholar
  48. 48.
    G.B. Huang, H. Lee, E. Learned-Miller, Learning hierarchical representations for face verification with convolutional deep belief networks, in 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2012), pp. 2518–2525CrossRefGoogle Scholar
  49. 49.
    G.B. Huang, M. Ramesh, T. Berg, E. Learned-Miller, Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (October 2007)Google Scholar
  50. 50.
    M. Jones, P.A. Viola, Face recognition using boosted local features. Technical Report TR2003-25, Mitsubishi Electric Research Laboratory (2003)Google Scholar
  51. 51.
    H.-C. Kim, J. Lee, Clustering based on Gaussian processes. Neural Comput. 19(11), 3088–3107 (2007)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    B.F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother, A. Mah, A.K. Jain, Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus benchmark A, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2015), pp. 1931–1939CrossRefGoogle Scholar
  53. 53.
    N. Kumar, A.C. Berg, P.N. Belhumeur, S.K. Nayar, Attribute and simile classifiers for face verification, in 2009 IEEE 12th International Conference on Computer Vision (IEEE, Washington, 2009), pp. 365–372CrossRefGoogle Scholar
  54. 54.
    N. Kumar, A.C. Berg, P.N. Belhumeur, S.K. Nayar, Describable visual attributes for face verification and image search. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1962–1977 (2011)CrossRefGoogle Scholar
  55. 55.
    N.D. Lawrence, Gaussian process latent variable models for visualisation of high dimensional data. Adv. Neural Inf. Process. Syst. 16(3), 329–336 (2004)Google Scholar
  56. 56.
    E.G. Learned-Miller, Data driven image models through continuous joint alignment. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 236–250 (2006)CrossRefGoogle Scholar
  57. 57.
    E.G. Learned-Miller, A. Ferencz, J. Malik, Learning hyper-features for visual identification, in Advances in Neural Information Processing Systems 17: Proceedings of the 2004 Conference, vol. 17 (MIT Press, Cambridge, 2005), p. 425Google Scholar
  58. 58.
    Z. Lei, M. Pietikainen, S.Z. Li, Learning discriminant face descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 289–302 (2014)CrossRefGoogle Scholar
  59. 59.
    H. Li, G. Hua, Hierarchical-PEP model for real-world face recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 4055–4064Google Scholar
  60. 60.
    H. Li, G. Hua, Z. Lin, J. Brandt, J. Yang, Probabilistic elastic matching for pose variant face verification, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2013), pp. 3499–3506CrossRefGoogle Scholar
  61. 61.
    H. Li, G. Hua, X. Shen, Z. Lin, J. Brandt, Eigen-PEP for video face recognition, in Asian Conference on Computer Vision (ACCV), 2014Google Scholar
  62. 62.
    P. Li, Y. Fu, U. Mohammed, J.H. Elder, S.J. Prince, Probabilistic models for inference about identity. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 144–157 (2012)CrossRefGoogle Scholar
  63. 63.
    L. Liang, R. Xiao, F. Wen, J. Sun, Face alignment via component-based discriminative search, in Computer Vision—ECCV 2008 (Springer, Heidelberg, 2008), pp. 72–85Google Scholar
  64. 64.
    S. Liao, Z. Lei, D. Yi, S.Z. Li. A benchmark study of large-scale unconstrained face recognition, in 2014 IEEE International Joint Conference on Biometrics (IJCB) (IEEE, Washington, 2014), pp. 1–8Google Scholar
  65. 65.
    C. Lu, X. Tang, Surpassing human-level face verification performance on LFW with Gaussianface (2014). ArXiv preprint arXiv:1404.3840Google Scholar
  66. 66.
    A. Martinez, R. Benavente, The AR face database. Technical Report CVC Technical Report 24, Ohio State University (1998)Google Scholar
  67. 67.
    D. Miller, I. Kemelmacher-Shlizerman, S.M. Seitz, MegaFace: a million faces for recognition at scale (2015). ArXiv preprint arXiv:1505.02108Google Scholar
  68. 68.
    E.G. Miller, N.E. Matsakis, P. Viola, Learning from one example through shared densities on transforms, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2000, vol. 1 (IEEE, Washington, 2000), pp. 464–471Google Scholar
  69. 69.
    B. Moghaddam, T. Jebara, A. Pentland, Bayesian face recognition. Pattern Recogn. 33(11), 1771–1782 (2000)CrossRefGoogle Scholar
  70. 70.
    V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in Proceedings of the 27th International Conference on Machine Learning (ICML-10) (2010), pp. 807–814Google Scholar
  71. 71.
    H.-W. Ng, S. Winkler, A data-driven approach to cleaning large face datasets, in 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, Washington, 2014), pp. 343–347CrossRefGoogle Scholar
  72. 72.
    H.V. Nguyen, L. Bai, Cosine similarity metric learning for face verification, in Computer Vision—ACCV 2010 (Springer, Heidelberg, 2011), pp. 709–720Google Scholar
  73. 73.
    K. Nigam, A.K. McCallum, S. Thrun, T. Mitchell, Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39(2–3), 103–134 (2000)CrossRefMATHGoogle Scholar
  74. 74.
    E. Nowak, F. Jurie, Learning visual similarity measures for comparing never seen objects, in IEEE Conference on Computer Vision and Pattern Recognition, 2007 (CVPR’07) (IEEE, Washington, 2007), pp. 1–8CrossRefGoogle Scholar
  75. 75.
    A. Ouamane, B. Messaoud, A. Guessoum, A. Hadid, M. Cheriet, Multi scale multi descriptor local binary features and exponential discriminant analysis for robust face authentication, in 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, Washington, 2014), pp. 313–317Google Scholar
  76. 76.
    S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRefGoogle Scholar
  77. 77.
    P.J. Phillips, P.J. Flynn, T. Scruggs, K.W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, W. Worek, Overview of the face recognition grand challenge, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 (CVPR 2005), vol. 1 (IEEE, Washington, 2005), pp. 947–954Google Scholar
  78. 78.
    N. Pinto, J.J. DiCarlo, D.D. Cox, How far can you get with a modern face recognition test set using only simple features? in IEEE Conference on Computer Vision and Pattern Recognition, 2009 (CVPR 2009) (IEEE, Washington, 2009), pp. 2591–2598Google Scholar
  79. 79.
    S. Rahimzadeh Arashloo, J. Kittler, Class-specific kernel fusion of multiple descriptors for face verification using multiscale binarised statistical image features. IEEE Trans. Inf. Forensics Secur. 9(12), 2100–2109 (2014)CrossRefGoogle Scholar
  80. 80.
    S.A. Rizvi, P.J. Phillips, H. Moon, The FERET verification testing protocol for face recognition algorithms, in Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998 (IEEE, Washington, 1998), pp. 48–53Google Scholar
  81. 81.
    C. Sanderson, B.C. Lovell, Multi-region probabilistic histograms for robust and scalable identity inference, in Advances in Biometrics (Springer, Heidelberg, 2009), pp. 199–208Google Scholar
  82. 82.
    F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: a unified embedding for face recognition and clustering, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2015), pp. 815–823CrossRefGoogle Scholar
  83. 83.
    H.J. Seo, P. Milanfar, Training-free, generic object detection using locally adaptive regression kernels. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1688–1704 (2010)CrossRefGoogle Scholar
  84. 84.
    H.J. Seo, P. Milanfar, Face verification using the LARK representation. IEEE Trans. Inf. Forensics Secur. 6(4), 1275–1286 (2011)CrossRefGoogle Scholar
  85. 85.
    K. Simonyan, O.M. Parkhi, A. Vedaldi, A. Zisserman, Fisher vector faces in the wild, in The British Machine Vision Conference, vol. 60 (2013)Google Scholar
  86. 86.
    L. Sirovich, M. Kirby, Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4(3), 519–524 (1987)CrossRefGoogle Scholar
  87. 87.
    C.J. Stone, Consistent nonparametric regression. Ann. Stat. 595–620 (1977)Google Scholar
  88. 88.
    Y. Sun, Y. Chen, X. Wang, X. Tang, Deep learning face representation by joint identification-verification, in Advances in Neural Information Processing Systems (2014), pp. 1988–1996Google Scholar
  89. 89.
    Y. Sun, D. Liang, X. Wang, X. Tang, DeepID3: face recognition with very deep neural networks (2015). ArXiv preprint arXiv:1502.00873Google Scholar
  90. 90.
    Y. Sun, X. Wang, X. Tang, Deep convolutional network cascade for facial point detection, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2013), pp. 3476–3483CrossRefGoogle Scholar
  91. 91.
    Y. Sun, X. Wang, X. Tang, Hybrid deep learning for face verification, in 2013 IEEE International Conference on Computer Vision (ICCV) (IEEE, Washington, 2013), pp. 1489–1496CrossRefGoogle Scholar
  92. 92.
    Y. Sun, X. Wang, X. Tang, Deep learning face representation from predicting 10,000 classes, in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2014), pp. 1891–1898CrossRefGoogle Scholar
  93. 93.
    Y. Sun, X. Wang, X. Tang, Deeply learned face representations are sparse, selective, and robust (2014). ArXiv preprint arXiv:1412.1265Google Scholar
  94. 94.
    C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions (2014). ArXiv preprint arXiv:1409.4842Google Scholar
  95. 95.
    Y. Taigman, L. Wolf, Leveraging billions of faces to overcome performance barriers in unconstrained face recognition (2011). ArXiv preprint arXiv:1108.1122Google Scholar
  96. 96.
    Y. Taigman, L. Wolf, T. Hassner, Multiple one-shots for utilizing class label information, in The British Machine Vision Conference (2009), pp. 1–12Google Scholar
  97. 97.
    Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: closing the gap to human-level performance in face verification. in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2014), pp. 1701–1708Google Scholar
  98. 98.
    B. Thomee, D.A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, L.-J. Li, The new data and new challenges in multimedia research (2015). ArXiv preprint arXiv:1503.01817Google Scholar
  99. 99.
    M.A. Turk, A.P. Pentland, Face recognition using eigenfaces, in Proceedings CVPR’91., IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991 (IEEE, Washington, 1991), pp. 586–591Google Scholar
  100. 100.
    R. Urtasun, T. Darrell, Discriminative Gaussian process latent variable model for classification, in Proceedings of the 24th International Conference on Machine Learning (ACM, New York, 2007), pp. 927–934Google Scholar
  101. 101.
    P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001 (CVPR 2001), vol. 1 (IEEE, Washington, 2001), p. I-511Google Scholar
  102. 102.
    K.Q. Weinberger, J. Blitzer, L.K. Saul, Distance metric learning for large margin nearest neighbor classification, in Neural Information Processing Systems (2006)Google Scholar
  103. 103.
    Wikipedia, The Hours (Film)—Wikipedia, The Free Encyclopedia (2015). Accessed 30 June 2015Google Scholar
  104. 104.
    L. Wolf, T. Hassner, Y. Taigman, Descriptor based methods in the wild, in Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, 2008Google Scholar
  105. 105.
    L. Wolf, T. Hassner, Y. Taigman, Similarity scores based on background samples, in Computer Vision—ACCV 2009 (Springer, Heidelberg, 2010), pp. 88–97Google Scholar
  106. 106.
    L. Wolf, T. Hassner, Y. Taigman, Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1978–1990 (2011)CrossRefGoogle Scholar
  107. 107.
    X. Xiong, F. De la Torre, Supervised descent method and its applications to face alignment, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2013), pp. 532–539CrossRefGoogle Scholar
  108. 108.
    D. Yi, Z. Lei, S.Z. Li, Towards pose robust face recognition, in 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2013), pp. 3539–3545CrossRefGoogle Scholar
  109. 109.
    D. Yi, Z. Lei, S. Liao, S.Z. Li, Learning face representation from scratch (2014). ArXiv preprint arXiv:1411.7923Google Scholar
  110. 110.
    Q. Yin, X. Tang, J. Sun, An associate-predict model for face recognition, in 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Washington, 2011), pp. 497–504Google Scholar
  111. 111.
    Y. Ying, P. Li, Distance metric learning with eigenvalue optimization. J. Mach. Learn. Res. 13(1), 1–26 (2012)MathSciNetMATHGoogle Scholar
  112. 112.
    M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in Computer Vision—ECCV 2014 (Springer, Heidelberg, 2014), pp. 818–833Google Scholar
  113. 113.
    E. Zhou, Z. Cao, Q. Yin, Naive-deep face recognition: touching the limit of LFW benchmark or not? (2015). ArXiv preprint arXiv:1501.04690Google Scholar
  114. 114.
    Z. Zhu, P. Luo, X. Wang, X. Tang, Recover canonical-view faces in the wild with deep neural networks (2014). ArXiv preprint arXiv:1404.3543Google Scholar
  115. 115.
    X. Zhu, Z. Lei, J. Yan, D. Yi, S.Z. Li, High-fidelity pose and expression normalization for face recognition in the wild, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 787–796Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Erik Learned-Miller
    • 1
  • Gary B. Huang
    • 2
  • Aruni RoyChowdhury
    • 1
  • Haoxiang Li
    • 3
  • Gang Hua
    • 3
  1. 1.University of MassachusettsAmherstUSA
  2. 2.Howard Hughes Medical Institute, Janelia Research CampusAshburnUSA
  3. 3.Stevens Institute of TechnologyHobokenUSA

Personalised recommendations