Phase Formation in Combustion and Pyrolysis

  • Nickolai M. RubtsovEmail author
Part of the Heat and Mass Transfer book series (HMT)


A heterophaseous branching chain reaction of dichlorosilane oxidation is considered in terms of unsteady nucleation theory taking into account the condensation growth of nuclei.  The transition between the homogeneous and heterogeneous phase formation; the dependence of the amount of aerosol on the initial temperature, pressure, and mixture concentration; both the kinetics of phase formation and of the disappearance of initial substance are qualitatively described. It is shown that small inhibitor (propene) additives reduce the mean size of aerosol particles. This result is also in qualitative agreement with experimental data. It is found that the amount of aerosol formed decreases with increasing initial temperature because of the growing equilibrium vapor pressure of the new phase. The reactivity of the silicon dioxide aerosol obtained in the presence of Freon-12 varies reversibly. The role of surface diffusion and surface nucleation in the deposition of thin films is discussed. We have experimentally observed both the stable liquid and solid Coulomb crystals formed in the discharge-initiated combustion reaction between dichlorosilane and oxygen and the growth dynamics of formation of a rotating solid Coulomb crystal at the interface between the void and dusty cloud. Synthesis of threadlike nanostructures of silicon and silicon carbide with the method of chemical vapor deposition using dichlorosilane pyrolysis in the presence of CCl4 and CF2Cl2 in nitrogen was carried out. 


Combustion Aerosol Thin film Transition Silicon dioxide Dichlorosilane oxidation Chain-branched Inhibitor Surface diffusion Surface nucleation Dusty plasma Coulomb crystal Threadlike nanostructures Silicon Silicon carbide 


  1. 1.
    Sugano, T., Ikoma, T., Takeisi, K.: Introduction to Microelectronics. Ivanami Seten, Tokyo (1988)Google Scholar
  2. 2.
    Gusev, A.I.: Structural features and properties of nanomaterials. Physics-Uspekhi (Adv. Phys. Sci.) 163(1), 55 (1998) (in Russian)Google Scholar
  3. 3.
    Shantarovich, P.S.: On the chain nature of silane oxidation. Acta Physicochem. URSS 2, 633 (1935)Google Scholar
  4. 4.
    Emeleus, H.J., Stewart, K.: Reactions of chlorinated silanes. J. Chem. Phys. 2(1), 1182 (1935)Google Scholar
  5. 5.
    Rubtsov, N.M., Tsvetkov, G.I., Azatyan, V.V., Chernysh, V.I.: Kinetic features of aerosol formation in the branched chain process of dichlorosilane oxidation under static conditions: I. Initiated ignition. Kinet. Catal. 42(2), 249 (2001) (in Russian)Google Scholar
  6. 6.
    Ulrich, S.D., Subramanian, N.S.: Particle growth in flames: III. Coalescence as a rate-controlling process. Combust. Sci. Technol. 17, 119 (1977)CrossRefGoogle Scholar
  7. 7.
    Courtney, W.G.: Kinetics of condensation of water vapor. J. Chem. Phys. 36(8), 2018 (1962)CrossRefGoogle Scholar
  8. 8.
    Repinskii, S.M.: Introduction to the Chemical Physics of the Surface of Solids. Nauka, Novosibirsk (1993). (in Russian)Google Scholar
  9. 9.
    Chernysh, V.I., Rubtsov, N.M., Tsvetkov, G.I.: Flame emission spectra in the region 400–600 nm during low-pressure silane and dichlorosilane oxidation. Kinet. Catal. 43(4), 485 (2002) (in Russian)Google Scholar
  10. 10.
    Petrov, Y.I: Clusters and Small Particles, p. 118. Nauka, Moscow (1986)Google Scholar
  11. 11.
    Ford, J.: Nucleation theorems, the statistical mechanics of molecular clusters, and a revision of classical nucleation theory. Phys. Rev. E 56, 5615 (1997)CrossRefGoogle Scholar
  12. 12.
    Burton, J.J.: On the classical nucleation theory. Acta Met. 21, 1225 (1973)CrossRefGoogle Scholar
  13. 13.
    Bowles, R.K., McGraw, R., Schaaf, P., Reiss, H.: A molecular based derivation of the nucleation theorem. J. Chem. Phys. 113(11), 4524 (2000)CrossRefGoogle Scholar
  14. 14.
    Vechkamaki, H., Ford, I.J.: Critical cluster size droplet nucleation rate from growth and decay formation of Lennard-Jones Clusters. J. Chem. Phys. 112(9), 4193 (2000)CrossRefGoogle Scholar
  15. 15.
    Kazakov, I.V., Gadiyak, G.V.: Cluster models in numerical experiments on homogeneous vapor condensation. Russ. J. Phys. Chem. B Focus Phys. 16(4), 114 (1997) (in Russian)Google Scholar
  16. 16.
    Mikheev, V.B., Laulainen, N.S., Barlow, S.E., et al.: The laminar flow reactor as a quantitative tool for nucleation studies: experimental results and theoretical analysis of homogeneous nucleation of dibutylphtalate. J. Chem. Phys. 113(9), 3704 (2000)CrossRefGoogle Scholar
  17. 17.
    Hale, B.N.: Application of a scaled homogeneous nucleation-rate formalism to experimental data. Phys. Rev. A 33(6), 4156 (1986)CrossRefGoogle Scholar
  18. 18.
    Chernyaev, V.N.: Technology of Production of Integrated Circuits. Energiya, Moscow (1977) (in Russian)Google Scholar
  19. 19.
    Liu, X.Y.: A new kinetic model of three-dimensional heterogeneous nucleation. J. Chem. Phys. 111(4), 1628 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu, X.Y., Strom, C.B.: Self-epitaxial origin of fractal aggregation. J. Chem. Phys. 113(10), 4408 (2000)CrossRefGoogle Scholar
  21. 21.
    Lazaridis, M., Ford, I.J.: A statistical mechanical approach to heterogeneous nucleation. J. Chem. Phys. 99(7), 5428 (1993)CrossRefGoogle Scholar
  22. 22.
    Lasaridis, M.: The effects of surface diffusion and line tension on the mechanism of heterogeneous nucleation. J. Colloid Interface Sci. 155, 386 (1993)CrossRefGoogle Scholar
  23. 23.
    Lasaridis, M.: A statistical mechanical model of heterogeneous nucleation including the effects of line tension and surface diffusion. J. Colloid Interface Sci. 162, 431 (1994)CrossRefGoogle Scholar
  24. 24.
    Zel’dovich, Y.B.: On the theory of new phase formation: cavitation. Acta Physicochim. URSS 18, 11 (1943)Google Scholar
  25. 25.
    Frenkel, J.: Kinetic Theory of Liquids. Oxford University Press, Oxford (1946)zbMATHGoogle Scholar
  26. 26.
    Volmer, M.: Kinetik der Phasenbildung. Steinkopff, Dresden (1939)Google Scholar
  27. 27.
    Rojkowski, Z., Synowiec, J.: Crystallization and Crystallizers. Wydawnictwa Naukowo-Techniczne, Warsaw (1991)Google Scholar
  28. 28.
    Semenov, N.N.: On Some Problems of Chemical Kinetics and Reactivity. Akad. Nauk SSSR, Moscow (1958) (in Russian)Google Scholar
  29. 29.
    Azatyan, V.V., Rubtsov, N.M., Ryzhkov, O.T., Temchin, S.M.: Kinetic peculiarities of chemical ionization in rarefied silane-oxygen and dichlorosilane-oxygen flames at near room temperature and low pressures. Kinet. Catal. 37(6), 805 (1996) (in Russian)Google Scholar
  30. 30.
    Rubtsov, N.M., Ryzhkov, O.T., Chernysh, V.I.: Study of the final products of dichlorosilane oxidation by ir spectrophotometry. Kinet. Catal. 36(5), 645 (1995) (in Russian)Google Scholar
  31. 31.
    Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I.: Intermediate products of the chain oxidation of dichlorosilane. Kinet. Catal. 38(4), 498 (1997) (in Russian)Google Scholar
  32. 32.
    Rubtsov, N.M., Azatyan, V.V., Nagornyi, S.S., et al.: Silicon dioxide film production method, RF Patent 2 040 072, Bulletin no. 20 (1995) (in Russian)Google Scholar
  33. 33.
    Azatyan, V.V., Merzhanov, A.G., Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I.: Kinetic factors determining specific features of solid phase formation in dichlorosilane oxidation. Kinet. Catal. 43(6), 805 (2002) (in Russian)Google Scholar
  34. 34.
    Geguzin, Y.E., Deryagin, B.V. (ed.).: Diffusion on the Surface of Crystalline Bodies: Surface Forces in Thin Films, p. 7. Nauka, Moscow (1979) (in Russian)Google Scholar
  35. 35.
    Rubtsov, N.M., Azatyan, V.V., Tsvetkov, G.I., Chernysh, V.I.: A long-lived intermediate product in the oxidation of monosilane and dichlorosilane at low pressures and 293 K. Kinet. Catal. 41(5), 645 (2000) (in Russian)Google Scholar
  36. 36.
    Azatyan, V.V., Aivazyan, R.G., Kalkanov, V.A. et al.: Heterogeneous self-acceleration and self-deceleration of chain combustion. Kinet. Catal. 28(6), 1290 (1987) (in Russian)Google Scholar
  37. 37.
    Gorbachev, Y.E., Nikitin, I.S.: Evolution of the cluster size distribution in condensation with a rapid change in gas-dynamic processes. Tech. Phys. 70(12), 28 (2000) (in Russian)Google Scholar
  38. 38.
    Ryzhkov, O.T., Azatyan, V.V., Rubtsov, N.M., Temchin, S.M.: Kinetics of branching of reaction chains in dichlorosilane oxidation. Kinet. Catal. 36(1), 99 (1995) (in Russian)Google Scholar
  39. 39.
    Frank-Kamenetskii, D.A.: Diffusion and Heat Transfer in Chemical Kinetics. Nauka, Moscow (1967) (in Russian)Google Scholar
  40. 40.
    Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I.: Determination of the heat of combustion of dichlorosilane in a constant-volume bomb. Russ. J. Phys. Chem. B Focus Phys. 19(8), 74 (2000) (in Russian)Google Scholar
  41. 41.
    Kikoin, I.K. (ed.).: Tables of Physical Values. Atomizdat, Moscow (1976) (in Russian)Google Scholar
  42. 42.
    Nikitin, E.E., Kondrat’ev, V.N.: Kinetics and mechanism of gas-phase reactions. Nauka, Moscow (1984) (in Russian)Google Scholar
  43. 43.
    Hastie, J.W.: Fire suppressants. J. Res. Natl. Stand. Technol. V. 22(7), 201 (2001)Google Scholar
  44. 44.
    Safarik, I., Sandhu, V., Lown, E.M., et al.: Rate constants for silylenes reactions. Res. Chem. Intermed. 14, 105 (1990)CrossRefGoogle Scholar
  45. 45.
    Geguzin, Y.E., Kaganovskii, Y.S.: Diffusion coalescence of immobile granules of discontinuous film on the real surface of a crystal. Ukrainian J. Phys. 21(2), 254 (1976) (in Russian)Google Scholar
  46. 46.
    Prostnev, A.S., Kozhushner, M.A., Shub, B.R.: Kinetics of surface migration and chemical reactions of adsorbed atoms at large jump lengths. Russ. J. Phys. Chem. B 5(1), 85 (1986)Google Scholar
  47. 47.
    Probstein, R.F.: Time lag in the self-nucleation of supersaturated vapor. J. Chem. Phys. 19(5), 619 (1951)CrossRefGoogle Scholar
  48. 48.
    Wurlitzer, S., Steffen, P., Fisher, T.M.: Line tension of langmuir monolayer phase boundaries determined with optical tweezers. J. Chem. Phys. 112(13), 5915 (2000)Google Scholar
  49. 49.
    Shelud’ko, A., Toshev, B.V., Bojajiev, D.T.: Attachment of particles to a liquid surface (capillary theory of flotation). J. Chem. Phys. 26(1), 231 (1957)Google Scholar
  50. 50.
    Platikanov, D., Nedyalkov, M., Shelud’ko, A.: Line tension at the Newtonian black film-solution interface. In: Deryagin, B.V. (ed.) Surface Forces in Thin Films, p. 191. Nauka, Moscow (1979)Google Scholar
  51. 51.
    Thomas, H., Morfill, G.E., Demmel, V., Goree, J., Feuerbacher, B., Möhlmann, D.: Coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652 (1994)CrossRefGoogle Scholar
  52. 52.
    Chu, J.H., Lin, I.: Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. Phys. Rev. Lett. 72, 4009 (1994)CrossRefGoogle Scholar
  53. 53.
    Hayashi, Y., Tachibana, K.: Observation of Coulomb-crystal formation from carbon particles grown in a methane plasma. Jpn. J. Appl. Phys. 33, 804 (1994)CrossRefGoogle Scholar
  54. 54.
    Goree, J.: Charging of particles in a plasma. Plasma Sources Sci. Technol. 3, 400 (1994)CrossRefGoogle Scholar
  55. 55.
    Fortov, V.E., Chrapak, A.G., Yakubov, I.T.: Physics of Non-Ideal Plasma. Fizmatlit, Moscow (2004) (in Russian)Google Scholar
  56. 56.
    Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I.: Kinetic regularities of solid-phase formation in the branching chain reaction of dichlorosilane oxidation in rf plasma at low pressures and 293 K. Mendeleev Commun. 39 (2006)Google Scholar
  57. 57.
    Rubtsov, N.M., Seplyarskii, B.S., Chernysh, V.I., Tsvetkov, G.I.: Phase formation in gas-phase combustion and pyrolysis reactions under spark and radio-frequency discharge conditions. Theor. Found. Chem. Eng. (Engl. transl.) 43, 361 (2009)Google Scholar
  58. 58.
    Cze, S.: VLSI Technology. Murray Hill, New York (1981)Google Scholar
  59. 59.
    Till, W.C., Luxon, J.T.: Integrated Circuits: Materials, Devices and Fabrication. Prentice-Hall, Englewood Cliffs (1982)Google Scholar
  60. 60.
    Azatyan, V.V., Lukashev, A.S., Nagornyi, S.S., Rubtsov, N.M., Temchin, S.M.: Kinet. Catal. (Engl. transl.) 34, 351 (1993)Google Scholar
  61. 61.
    Chernysh, V.I., Rubtsov, N.M., Tsvetkov, G.I.: Flame emission spectra over the interval 400–600 nm at monosilane and dichlorosilane oxidation at low pressures. Kinet. Catal. (Engl. transl.) 43, 3 (2002)Google Scholar
  62. 62.
    Macek, A.: Effect of additives on formation of spherical detonation waves in hydrogen-oxygen-mixtures. AIAA J. 1(8), 1915–1918 (1963)CrossRefGoogle Scholar
  63. 63.
    Barin, I.: Thermodynamic Data of Pure Substances. VCH, Weinheim (1989)Google Scholar
  64. 64.
    Rubtsov, N.M., Azatyan, V.V., Tsvetkov, G.I., Temchin, S.M.: Detection of SiH2 from the A1B1–X1A1 transition in the emission spectrum of the rarified flame in the oxidation of silane. Mendeleev Commun. 187 (1997)Google Scholar
  65. 65.
    Smith, B., Vasut, J., Hyde, T., Matthews, L., Reay, J., Cook, M., Schmoke, J.: Phase transitions in a dusty plasma with two distinct particle sizes. Adv. Space Res. 34, 2379 (2004)CrossRefGoogle Scholar
  66. 66.
    Zuzic, M., Ivlev, A.V., Goree, J.: Three-dimensional strongly coupled plasma crystal under gravity conditions. Phys. Rev. Lett. 85, 4064 (2000)CrossRefGoogle Scholar
  67. 67.
    Pearce, R., Gaydon, A.: The Identification of Molecular Spectra. Academic Press, New York (1941)Google Scholar
  68. 68.
    Lin, I., Chiang, C.-H., Chu, J.H., Jaun, W.-T.: Order-disorder structures in strongly coupled dusty plasmas: from Coulomb crystals to gases. Chin. J. Phys. 33(5), 453 (1995)Google Scholar
  69. 69.
    Ward, J.W., Wei, B.Q., Ajayan, P.M.: Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane. Chem. Phys. Lett. 376, 717 (2003)Google Scholar
  70. 70.
    Klinke, C., Bonard, J.-M., Kern, K.: Surface science, comparative study of catalytic growth of nanotube films. 492, 195 (2001)Google Scholar
  71. 71.
    Lee, C.J., Park, J., Kang, S.Y., Lee, J.H.: Growth and field electron emission of vertically aligned multiwall nanotubes. Chem. Phys. Lett. 323, 554 (2000)CrossRefGoogle Scholar
  72. 72.
    Lopez, M., Garrido, B., Garcia, C., Pellegrino, P., Perez-Rodrigues, A.: Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2. Appl. Phys. Lett. 80, 1637 (2002)CrossRefGoogle Scholar
  73. 73.
    Fainer, N.I., Maximovskii, E.A., Rumyantsev, Y.M., Kosinova, M.L., Rumyantsev, J.M.: Physicochemial properties ob nanocrystalline films of silicon carbonitride. Nucl. Instr. Meth. A. 470, 193 (2001)Google Scholar
  74. 74.
    Deng, S.Z., Wu, Z.S., Chen, J., She, J.C., Xu, N.S.: Synthesis of silicon carbide nanowires in a catalyst-assisted process. Chem. Phys. Lett. 356, 511 (2002)Google Scholar
  75. 75.
    Sylenko, P.M., Shlapak, A.M., Kaverina, S.M., Tomila, T.V., Bykov, A.I.: Fe-catalyzed synthesis of SiC nanofibers from methyltrichlorosilane, Inorganic Mater. (NATO Sci., Ser. 2)44(4), 388 (in Russian) Google Scholar
  76. 76.
    Wolf, E.L.: Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience, p. 187. Wiley, New York (2004)Google Scholar
  77. 77.
    Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I.: Different effects of active minor admixtures on hydrogen and methane ignitions. Kinet. Catal. 49, 363 (2008) [Kinet. Catal. (Engl. Transl.), 2008, 49, 344]Google Scholar
  78. 78.
    Miyamoto, Y., Yu, B.D.: Computational designing of graphitic silicon carbide and its tubular forms. Appl. Phys. Lett. 80, 586 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Russian Academy of SciencesInstitute of Structural Macrokinetics and Materials ScienceMoscowRussia

Personalised recommendations