Advertisement

Detonation Limits in Gaseous Systems

  • Nickolai M. RubtsovEmail author
Chapter
Part of the Heat and Mass Transfer book series (HMT)

Abstract

It is illustrated that one-dimensional Zeldovich–von Neumann–Doering model of detonation wave gives satisfactory approach for the description of a stationary detonation wave, despite a large number of the approximations made at the derivation of the equations of the theory. Besides, according to modern literary data on numerical modeling, the neglect of transverse structure of detonation wave in one-dimensional model has no influence on the pressure value in front of DW in comparison with multi-dimensional models. It is experimentally demonstrated that the acoustic resonator (Helmholtz’s resonator) connected to a cylindrical reactor can cause reactor destruction at spark initiation of deflagration in lean (15%) hydrogen mixture with oxygen. That points to a possibility of transition of deflagration to supersonic regime mode near the lower concentration limit of detonation even for small reactor where detonation is obviously impossible. On the basis of Zeldovich–von Neumann–Doering detonation theory with allowance for the  theory of chain processes by the example of the oxidation of hydrogen-rich mixtures in the presence of chemically active additive (inhibitor), it is shown that taking into account reactions of inhibitor with chain carrier leads to “chemical” losses in addition to heat losses.

Keywords

Hydrogen oxidation Branching chain ZND detonation model Acoustic resonator Flame acceleration Chemical losses Heat losses 

References

  1. 1.
    Sokolik, A.S.: Self-ignition, Flame and Detonation in Gases. Ed. Academy of Sciences USSR, Moscow (1960) (in Russian)Google Scholar
  2. 2.
    Zel’dovich, Y.B., Barenblatt, G.A., Machviladze, D.V., Teytel’boym, A.A.: Mathematical Theory of Flame Propagation. Ed. Nauka, Moscow (1980), 620 p (in Russian)Google Scholar
  3. 3.
    Frank-Kamenetsky, D.A.: Diffusion and Heat Transfer in Chemical Kinetics. Ed. Nauka, Moscow (1967), 492 p (in Russian)Google Scholar
  4. 4.
    Bertherlot, M., Vielle, P.: Nouvelles recherches sur la propagation des phenomenes explosifs dans les gaz. Ann. de Phys. et Chim. 28, 289 (1881)Google Scholar
  5. 5.
    Mallard, E., Le Chatelier, H.L.: Recherches experimental et theoretique sur le combustion des melanges gaseaux explosifs. Ann. Min. 8, 274–618 (1881)Google Scholar
  6. 6.
    Michelson, V.A.: On the normal ignition velocity of explosive gaseous mixtures. Sci. Trans. Imperial Moscow Univ. Math. Phys. 10, 1–93 (1893)Google Scholar
  7. 7.
    Shepherd, J.E.: Detonation in gases. Proc. Combust. Inst. 32, 83–98 (2009)CrossRefGoogle Scholar
  8. 8.
    Chapman, D.L.: On the rate of explosion in gases. Philos. Mag., Ser. 5 (London: Taylor & Francis) 47(284), 90–104 (1899)Google Scholar
  9. 9.
    Zeldovich, Y.B., Kompaneets, A.S.: Detonation Theory. Gostechizdat, Moscow (1955), 268 p (in Russian)Google Scholar
  10. 10.
    Guirao, M., Knystautas, R., Lee, J.H.: A Summary of Hydrogen-Air Detonation Experiments, Department of Mechanical Engineering, McGill University, 817 Sherbrooke St. W., Montreal, Quebec, Canada H3A 2K6 1989 (distribution unlimited)Google Scholar
  11. 11.
    Solouchin, R.I.: Detonation waves in gases. Adv. Phys. Sci. LXXX(4), 525–549 (1963) (in Russian)Google Scholar
  12. 12.
    Schyolkin, K.I., Troshin, Y.K.: Gas Dynamics of Combustion. Ed. Academy of sciences USSR, Moscow (1963), 560 p (in Russian)Google Scholar
  13. 13.
    Austin, J.M., Pintgen, F., Shepherd, J.E.: Reaction zones in highly unstable detonations. Proc. Combust. Inst. 30(2), 1849 (2005)Google Scholar
  14. 14.
    Botros, B.B., Ng, H.D., Zhu, Y., Ju, Y., Lee, J.H.S.: The evolution and cellular structure of a detonation subsequent to a head-on interaction with a shock wave. Combust. Flame 151, 573 (2007)Google Scholar
  15. 15.
    Pintgen, F., Austin, J.M., Shepherd, J.E.: Detonation front structure: Variety and characterization. In: Roy, G.D., Frolov, S.M., Santoro, R.J., Tsyganov, S.A. (eds.) Confined Detonations and Pulse Detonation Engines, pp. 105–116. Torus Press, Moscow (2003)Google Scholar
  16. 16.
    Owens, Z.C.: Flowfield Characterization and Model Development in Detonation Tubes, a dissertation for the Ph.D degree, Stanford University, February 2008Google Scholar
  17. 17.
    Trotsuk, A.V.: Numerical investigation of reflection of detonation waves from the wedge. Phys. Combust. Explosion 35(6), 97–104 (1999) (in Russian)Google Scholar
  18. 18.
    Dupre, G., Knystautas, R., Lee, J.H.: Near-limit propagation of detonations in tubes. In: Presented at the 10th International Colloquium on Dvnamics of Explosions and Reactive Systems, Berkeley (1985)Google Scholar
  19. 19.
    Nettleton, M.A.: Gaseous Detonations: Their Nature, Effects and Control, 255 pp. Chapman and Hall, London (1987)Google Scholar
  20. 20.
    Macek, A.: Effect of additives on formation of spherical detonation waves in hydrogen-oxygen-mixtures. AIAA J. 1(8), 1915–1918 (1963)CrossRefGoogle Scholar
  21. 21.
    Oran, E.S., Gamezo, V.N.: Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust. Flame 148, 4–47 (2007)Google Scholar
  22. 22.
    Zeldovich, Y.B., Gelfand, B.E., Kazhdan, Y.M., Frolov, S.M.: Detonation propagation in a rough tube taking into account damping and heat losses. Phys. Combust. Explos. 23(3), 103–112 (1987) (in Russian)Google Scholar
  23. 23.
    Zeldovich, Y.B.: On the pressure and velocity distribution in the products of detonation explosion, in particular at spherical propagation of detonation wave. J. Exp. Theor. Phys. 12, 389–406 (1942) (in Russian)Google Scholar
  24. 24.
    Shepherd, J.E., Higgins, A.J.: Shock Waves 15(2), 147 (2006)CrossRefGoogle Scholar
  25. 25.
    GALCIT Explosion Dynamics Laboratory Detonation Database. (2005) (Mail Code 205-45, Caltech Pasadena, CA 91125, jeshep@galcit.caltech.edu)Google Scholar
  26. 26.
    Falempin, F.: Continuous Detonation Wave Engine. In Advances on Propulsion Technology for High-Speed Aircraft, 2008, (p. 8–1–8–16), Educational Notes RTO-EN-AVT-150, Paper 8. Neuilly-sur-Seine, France: RTO. http://www.rto.nato.int
  27. 27.
    Zel’dovich, Ya.B.: The question about energetic use of detonation combustion. Zh. Tech. Fiz. 10(17), 1453–1461 (1940); JPPOEL 22 Google Scholar
  28. 28.
    Bohon, Y.A., Naboko, I.M., Fortov, V.E., et.al.: Development of explosion of gas mixture behind shock waves. Prepr. Inst. High Temp. RAS 2–416 (1998) (in Russian)Google Scholar
  29. 29.
    Salamandra, G.D., Naboko, I.M., Sevastyanova, I. К.: Impulse source of repetitive light flashes. Instrum. Exp. Tech. 2, 124–127 (1959) (in Russian)Google Scholar
  30. 30.
    Kessler, D.A., Gamezo, V.N., Oran, E.S.: Gas-phase detonation propagation in mixture composition gradients. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 370, 567 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Berkenbosh, A.C.: Capturing detonation waves for reactive Euler equations. Proefschrift Technishe Universiteit Eindhoven, The Nederlands (1995). ISBN 90-75365-04-7, NUGI 811Google Scholar
  32. 32.
    Zel’dovich, Y.B., Barenblatt, G.A., Librovich, V.B., Machviladze, D.V.: Mathematical Theory of Flame Propagation. Nauka, Moscow (1980) (in Russian)Google Scholar
  33. 33.
    Markstein, G.H.: Nonsteady Flame Propagation. Pergamon, New York (1964)Google Scholar
  34. 34.
    Moen, I.O., Funk, J.W., Ward, S.A., Rude, G.M., Thibault, P.A.: In: Bowen, J.R., et al. (eds.) Proceedings of the AIAA Progress in Astronautics and Aeronautics, vol. 94, p. 55. New York (1984)Google Scholar
  35. 35.
    Roy, G.D., Frolov, S.M., Borisov, A.A., Netzer, D.W.: Pulse detonation propulsion: challenges, current statut and future perspectives. Prog. Energy Combust. Sci. 30, 545–672 (2004)Google Scholar
  36. 36.
    Knystautas, R., Lee, J.H., Moen, J., Wagner, H.G.: Direct initiation of spherical detonation by a hot turbulent gas jet. In: Symposium on Combustion, Pittsburgh (1978)Google Scholar
  37. 37.
    Lefebvre, M.H., Oran, E.S., Kailasanath, K., Van Tiggelen, P.J.: The Influence of heat capacity and diluent on detonation structure. Combust. Flame 95, 206–223 (1993)Google Scholar
  38. 38.
    Shepherd, J.E.: In Proceedings of the ASME Pressure Vessels and Piping Conference, ASME, Paper PVP2006- ICPVT11-93670, Vancouver (2006)Google Scholar
  39. 39.
    Poludenko, A.Y., Gardiner, T.A., Oran, E.S.: Deflagration-to-detonation transition in unconfined media. In: Proceedings of the 23rd ICDERS (2011)Google Scholar
  40. 40.
    Searby, G., Rochwerger, D.: A parametric acoustic instability in premixed flames. J. Fluid Mech. 231, 529 (1991)CrossRefzbMATHGoogle Scholar
  41. 41.
    Rubtsov, N.M.: Effect of chemically active additives on the velocity of detonation waves and on the limit of gaseous detonation. Mendeleev Commun. 225 (2000)Google Scholar
  42. 42.
    Rubtsov, N.M., Seplyarsky, B.S., Tsvetkov, G.I., Chernysh, V.I.: Flame propagation limits in H2 + air mixtures in the presence of small inhibitor additives. Mendeleev Commun. 18, 105 (2008)CrossRefGoogle Scholar
  43. 43.
    Naboko, I.M., Rubtsov, N.M., Seplyarskii, B.S., Chrenysh, V.I., Tsvetkov, G.I.: Interaction of the laminar flames of methane–air mixtures with close-meshed spherical and planar obstacles in a closed cylindrical reactor under spark discharge initiation. Mendeleev Commun. 23, 163 (2013)CrossRefGoogle Scholar
  44. 44.
    Moyle, M.P., Morrison, R.B., Churchill, S.W.: Detonation characteristics of hydrogen-oxygen mixtures. A. 1. Ch. E. J. 92–96 (1960)Google Scholar
  45. 45.
    Zabetakis, M.G.: Safety with Cryogenic Fluids. Plenum Press, New York (1967)CrossRefGoogle Scholar
  46. 46.
    Bondar, Y.A., Ivanov, M.S.: DSMC Study of an H2/O2 detonation wave structure. AIAA Pap. 4510 (2010)Google Scholar
  47. 47.
    Rubtsov, N.M., Seplyarskii, B.S., Troshin, K.Ya., Chernysh, V.I., Tsvetkov, G.I.: Initiation and propagation of laminar spherical flames at atmospheric pressure. Mendeleev Commun. 21, 218 (2011)Google Scholar
  48. 48.
    Rubtsov, N.M., Seplyarskii, B.S., Troshin, K.Y., Tsvetkov, G.I., Seplyarskii, B.S.: Investigation into spontaneous ignition of hydrogen–air mixtures in a heated reactor at atmospheric pressure by high-speed cinematography. Mendeleev Commun. 22, 222 (2012)CrossRefGoogle Scholar
  49. 49.
    Rubtsov, N.M., Kotelkin, V.D., Seplyarskii, B.S., Chernysh, V.I., Tsvetkov, G.I.: Investigation into the combustion of lean hydrogen–air mixtures at atmospheric pressure by means of high-speed cinematography. Mendeleev Commun. 21, 215 (2011)CrossRefGoogle Scholar
  50. 50.
    Lewis, V., Von Elbe, G.: Combustion Explosions and Flame in Gases. Academic Press, New York (1987)Google Scholar
  51. 51.
    Van Tiggelen, P.J., Lefebvre, M.H.: Flame retardants effectiveness. In Gaseous Detonation Mitigation, Halon Options Working Conference, p. 131 (1998)Google Scholar
  52. 52.
    Zel’dovich, Y.B.: Selected Works, Chemical Physics and Hydrodynamics. Nauka, Moscow (1984) (in Russian)Google Scholar
  53. 53.
    Borisov, A.A., Kosenkov, V.V., Mailkov, A.E., Mikhalkin, V.N., Khomik, S.V.: Effect of flame inhibitors on detonation characteristics of fuel-air mixtures. Proc. AIAA 312–323 (1993)Google Scholar
  54. 54.
    Agafonov, G.L., Frolov, S.M.: Calculation of the detonation limits of hydrogen-containing gas mixtures. Fiz. Goreniya Vzryva 1, 92 (1994) (in Russian)Google Scholar
  55. 55.
    Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modelling: supplement II. J. Phys. Chem. Ref. Data 34, 566 (2005)CrossRefGoogle Scholar
  56. 56.
    Semenov, N.N.: On Some Problems of Chemical Kinetics and Reaction Ability. Akademii Nauk SSSR, Moscow (1958) (in Russian)Google Scholar
  57. 57.
    Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, Th., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modeling. J. Phys. Chem. Ref. Data 21, 411–460 (1992)Google Scholar
  58. 58.
    Harris, G.W., Pitts, J.N.: Rate constants of reactions of atoms with unsaturated hydrocarbons. J. Chem. Phys. 77, 3994 (1982)Google Scholar
  59. 59.
    Schultz, E., Shepherd, J.: Validation of detailed reaction mechanisms for detonation simulation. In: Explosion Dynamics Laboratory Report FM99-5, 70 pp. Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena (2000)Google Scholar
  60. 60.
    Kikoin, I.K. (ed.): Tables of Physical Values, Handbook, 1007 pp. Atomizdat, Moscow (1976) (in Russian)Google Scholar
  61. 61.
    Watanabe, T., Kyogoki, T., Tsunasima, S., Sato, S., Nagase, S.: Kinetic isotope effects in the H + C2H6 = C3H7 reaction. Bull. Chem. Soc. Jpn. 55, 3720 (1982)Google Scholar
  62. 62.
    Baulch, D.L., Cobos, C.J., Cox, R.A.: Evaluated Kinetic data for combustion modeling, supplement 1. J. Phys. Chem. Ref. Data 23, 847 (1994)Google Scholar
  63. 63.
    Azatyan, V.V., Baklanov, D.I., Gvozdeva, L.G., Lagutov, Y.P., Merzhanov, A.G., Rubtsov, N.M., Tsvetkov, G.I., Sharov, Y.L., Shcherbak, N.B.: Inhibition of developed detonation of hydrogen-air mixtures. Rus. Dokl. Phys. Chem. 376(1–3), 19 (in Russian)Google Scholar
  64. 64.
    Azatyan, V.V., Medvedev, S.N., Frolov, S.M.: Numerical modeling of chemical inhibition of detonation of hydrogen-air mixtures, Russ. J. Phys. Chem. B 29(4), 56 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Russian Academy of SciencesInstitute of Structural Macrokinetics and Materials ScienceMoscowRussia

Personalised recommendations