Advertisement

Some Features of Kinetic Mechanisms of Gaseous Combustion

  • Nickolai M. RubtsovEmail author
Chapter
Part of the Heat and Mass Transfer book series (HMT)

Abstract

The approximate analytical method was applied for analysis of the problem on a local chain-thermal explosion in the reaction of hydrogen oxidation in the presence of chemically active additive. It was experimentally revealed that the methane combustion inhibitor tetrachloromethane shows no effect on the lower ignition limit of hydrogen combustion.  It is established that small amounts (~10-1 %) of chromium hexacarbonyl promote combustion of 2H2 + O2 mixture, which manifests itself in the increase in the propagation velocity of the flame, thus inhibition of oxidation of isobutene by this additive takes place. Therefore, the role of hydrogen atoms in hydrocarbon oxidation is not significant and may result at least in participating in longer reaction chains than in hydrogen oxidation. It means also that the kinetic mechanism of inhibiting combustion of hydrocarbons by metal carbonyls suggested in the literature based on accounting for termination of hydrogen atoms should be refined.

Keywords

Chain-thermal explosion Metal carbonyls Inhibitor Promoter Flame propagation Speed color cinematography Lower ignition limit Critical condition Chemically active additive 

References

  1. 1.
    Semenov, N.N.: On Some Problems of Chemical Kinetics and Reaction Ability. Ed. Academy of Sciences USSR, Moscow (1958) (in Russian)Google Scholar
  2. 2.
    Markstein, G.H. (ed.): Nonsteady Flame Propagation. Pergamon Press, Oxford (1964)Google Scholar
  3. 3.
    Lewis, B., Von Elbe, G.: Combustion, Explosions and Flame in Gases. Academic Press, New York (1987)Google Scholar
  4. 4.
    Sokolik, A.S.: Self-ignition, Flame and Detonation in Gases. Ed. Academy of Sciences USSR, Moscow (1960) (in Russian)Google Scholar
  5. 5.
    Rubtsov, N.M., Seplyarsky, B.S., Tsvetkov, G.I., Chernysh, V.I.: Influence of inert additives on the time of formation of steady spherical fronts of laminar flames of mixtures of natural gas and isobutylene with oxygen under spark initiation. Mendeleev Commun. 19, 15 (2009)Google Scholar
  6. 6.
    Zel’dovich, Ya.B., Simonov, N.N.: On the theory of spark ignition of gaseous combustible mixtures. Russ. J. Phys. Chem. A. 23(11), 1361 (1949) (in Russian)Google Scholar
  7. 7.
    Schetinkov, E.S.: Physics of Gaseous Combustion. Moscow (1965). (in Russian)Google Scholar
  8. 8.
    Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I.: Different character of action of small chemically active additives on the ignition of hydrogen and methane. Russ. J. Kinet. Catal. 49(36), 363 (2007)Google Scholar
  9. 9.
    Seplyarsky, B.S., Afanasiev, S.Y.: On the theory of local thermal explosion. Russ. J. Chem. Phys. B. 8(5), 646 (1989)Google Scholar
  10. 10.
    Seplyarsky, B.S., Afanasiev, S.Y.: On the theory of local thermal explosion. Russ. J. Phys. Combust. Explos. 22(6), 9 (1989)Google Scholar
  11. 11.
    Zel’dovich, Y.B., Barenblatt, G.A., Librovich, V.B., Machviladze, D.V.: Mathematical Theory of Flame Propagation. Nauka, Moscow (1980) (in Russian)Google Scholar
  12. 12.
    Ono, R., Nifuku, M., Fujiwara, S., Horiguchi, S., Oda, T.: Gas temperature of capacitance spark discharge in air. J. Appl. Phys. 97(12), 123307–123314 (2005)CrossRefGoogle Scholar
  13. 13.
    Kikoin, E.K. (ed.): Tables of Physical Values, Handbook. Atomizdat, Moscow (1976) (in Russian)Google Scholar
  14. 14.
    Germann, T.C., Miller, W.H.: Quantum mechanical pressure dependent reaction and recombination rates for OH + O → O2 + H. J. Phys. Chem. A 101, 6358–6367 (1997)Google Scholar
  15. 15.
    Halstead, C.J., Jenkins, D.R.: Rates of H + H + M and H + OH + M reactions in flames. Combust. Flame 14, 321–324 (1970)CrossRefGoogle Scholar
  16. 16.
    Atkinson, R., Baulch, D.L., Cox, R.A., Hampson Jr., R.F., Kerr, J.A., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 26, 1329–1499 (1997)CrossRefGoogle Scholar
  17. 17.
    Azatyan, V.V., Alexandrov, E.N., Troshin, A.F.: On the velocity of chain initiation in reactions of hydrogen and deuterium combustion. Rus. J. Kinet. Catal. 16, 306 (1975) (in Russian)Google Scholar
  18. 18.
    Rubtsov, N.M., Seplyarsky, B.S., Tsvetkov, G.I., Chernysh, V.I.: Flame propagation limits in H2—air mixtures in the presence of small inhibitor additives. Mendeleev Commun. 18, 105–108 (2008)Google Scholar
  19. 19.
    Voevodsky, V.V., Soloukhin, R.I.: On the mechanism and explosion limits of hydrogen-oxygen chain self-ignition in shock waves. In: International Symposium on Combustion, pp. 279–283. The Combustion Institute, Pittsburgh (1965)Google Scholar
  20. 20.
    Borisov, A.A., Zamanski, V.M., Lisyanski, V.V., Troshin, K.Y.: On the promotion in branched chain reactions. II Acceleration of chain branching. Rus. J. Chem. Phys. B. 11(9), 1235 (1992)Google Scholar
  21. 21.
    Hastie, J.W.: Fire Suppressants. J. Res. Natl. Stand. Technol. 22(7), 201 (2001)Google Scholar
  22. 22.
    Macek, A.: Effect of additives on formation of spherical detonation waves in hydrogen- oxygen- mixtures. AIAA J. 1(8), 1915 (1963)Google Scholar
  23. 23.
    Rubtsov, N.M., Seplyarskii, B.S.: Contemporary problems of combustion science. LAP Lambert Academic Publishing, 161 pp. (2012). ISBN 978-3-659-26922-6 (in Russian)Google Scholar
  24. 24.
    Rubtsov, N.M., Seplyarskii, B.S.: Concentration limits of combustion in rich hydrogen–air mixtures in the presence of inhibitors. Mendelleev Commun. 20, 296 (2010)Google Scholar
  25. 25.
    Zeldovich, Y.B.: Chain reactions in hot flames—approximate theory of flame velocity, Kinetika i kataliz 2(3), 305 (1961) (in Russian)Google Scholar
  26. 26.
    Linteris, G.T., Rumminger, M.D., Babushok, V., Tsang, W.: Flame inhibition by ferrocene and blends of inert and catalytic agents. In: Proceedings of the 28th International Symposium on Combustion, p. 33. London (2001)Google Scholar
  27. 27.
    Jayaweera, T.M., Melius, C.F., Pitz, W.J., Westbrook, C.K., Korobeinichev, O.P., Shvartsberg, V.M., Shmakov, A.G., Rybitskaya, I.V., Curran, H.J.: Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios. In: Proceedings of the Joint Meeting Combustion Inst, p. 33. Oakland, Calif (2001)Google Scholar
  28. 28.
    Rumminger, M.D., Reinelt, D., Babushok, V., Linteris, G.T.: Inhibition of Flames by Iron Pentacarbonyl. Halon Options Tech. Work. Conf. Albuquerque. N.M., p. 12 (1998)Google Scholar
  29. 29.
    Linteris, G.T., Reinelt, D.: The role of particles in counterflow diffusion flames inhibited by iron pentacarbonyl. In: Proceedings of the 7th International Fire Science Engineering Conference Cambridge, p. 477. England (1996)Google Scholar
  30. 30.
    Friedman, R., Levy, J.B.: Suppression of benzene oxidation by tetraethyl lead. Combust. Flame 7, 195 (1963)Google Scholar
  31. 31.
    Reinelt, D., Babushok, V., Linteris, G.T.: Flame inhibition by ferrocene and iron pentacarbonyl. East. States Sect. Meet. Combust. Inst. Hilton Head. S.C., p. 32 (1996)Google Scholar
  32. 32.
    Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I.: Intermediate products of the chain oxidation of dichlorosilane. Russ. J. Kinet. Catal. 38(4), 457 (2002)Google Scholar
  33. 33.
    Barin, I.: Thermodynamic Data of Pure Substances. VCH, Berlin (1989)Google Scholar
  34. 34.
    Azatyan, V.V.: Chain reactions and unsteadiness of the state of the surface. Usp. Khim. 33, 33 (1985)Google Scholar
  35. 35.
    Rubtsov, N.M., Chernysh, V.I., Tsvetkov, G.I., Seplyarskii, B.S.: Influence of Cr(CO)6 and Mo(CO)6 on the critical conditions for ignition and the velocities of flame propagation for the chain-branching oxidation of hydrogen and propylene. Mendeleev Commun. 16, 283 (2006)Google Scholar
  36. 36.
    Pearse, R.W.B., Gaydon, A.G.: The identification of molecular spectra. University Printing House Cambridge, Great Britain (1976)Google Scholar
  37. 37.
    Grosshandler, W.L.: In search of alternative fire suppressants. In: Proceedings Symposium Thermal Science Engineering in Honor of Chancellor Chang-Lin Tien, p. 275. Berkeley Calif (1995)Google Scholar
  38. 38.
    Azatyan, V.V., Pyatnitskii, Y.I., Boldyreva, N.A., et al.: Detection of chemoluminescence during oxidation of hydrogen-containing compounds on the surface of platinum metals. Rus. J. Khim. Fiz. (7), 235 (1988)Google Scholar
  39. 39.
    Azatyan, V.V.: Heterophase development of chains in processes of combustion and pyrolysis. Russ. J. Fiz. Khim. 72(1), 199 (1998)Google Scholar
  40. 40.
    Warnatz, J., Maas, U., Dibble, R.: Combustion: Physical and Chemical Aspects, Modeling, Experiments, Formation of Pollutants. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  41. 41.
    Lisochkin, Ya.A., Poznyak, V.I.: Phlegmatization of methane–air mixtures by compositions based on carbon dioxide and nitrogen with additions of hydrocarbons. Rus. J. Fiz. Goreniya. Vzryva. 41(5), 23 (2005). (in Russian)Google Scholar
  42. 42.
    Kondrat’ev, V.N.: Chemical Kinetics and Chain Reactions. Ed. Nauka, Moscow (1966) (in Russian)Google Scholar
  43. 43.
    Neiman, M.B., Egorov, L.N.: Self-ignition of methane-oxygen mixtures. Russ. J. Phys. Chem. 3, 61 (1932) (in Russian)Google Scholar
  44. 44.
    Rubtsov, N.M., Azatyan, V.V., Borodulin, R.R.: Izv. Akad. Nauk SSSR, Ser. Khim. (6), 1234 (1980) (in Russian)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Russian Academy of SciencesInstitute of Structural Macrokinetics and Materials ScienceMoscowRussia

Personalised recommendations