Flame Propagation: Theoretical Approaches

  • Nickolai M. RubtsovEmail author
Part of the Heat and Mass Transfer book series (HMT)


An approximate analytical approach to the estimation of the effectiveness of inhibitors on flame velocity and flame propagation limits was suggested for rich hydrogen−air mixtures. The method is based on a narrow reaction zone and the branched chain character of hydrogen oxidation. It is shown that the occurrence of the limits is due to the positive feedback between flame velocity and the amount of active centers of combustion terminated via an inhibitor. The method is proposed for the analysis of experimental data on the limits of flame propagation in hydrogen-air mixtures at 1 atm. The mechanism of the occurrence of the upper concentration limit at 1 atm taking into account heat losses in the termolecular recombination is also presented.


Narrow reaction zone Hydrogen oxidation Positive feedback Inhibitor Flame propagation limits Chain branching Termolecular recombination 


  1. 1.
    Sokolik, A.S.: Self-ignition, flame and detonation in gases. Ed. Academy of Sciences USSR, Moscow (1960) (in Russian) Google Scholar
  2. 2.
    Macek, A.: Effect of additives on formation of spherical detonation waves in hydrogen-oxygen-mixtures. AIAA J. 1(8), 1915–1918 (1963)CrossRefGoogle Scholar
  3. 3.
    Reinelt, D., Babushok, V., Linteris, G.T.: Flame inhibition by ferrocene, and blends of inert and catalytic agents. Eastern States Section Meeting of The Combustion Institute, Hilton Head, SC (1996)Google Scholar
  4. 4.
    Linteris, G.T., Knyasev, V.D., Babushok, V.: Inhibition of flames by iron pentacarbonyl. Combust. Flame 129, 221 (2002)CrossRefGoogle Scholar
  5. 5.
    Rubtsov, N.M., Chernysh, V.I., Tsvetkov, G.I., Seplyarskii, B.S.: Influence of Cr(CO)6 and Mo(CO)6 on the critical conditions for ignition and the velocities of flame propagation for the chain-branching oxidation of hydrogen and propylene. Mendeleev Commun., 283 (2006)Google Scholar
  6. 6.
    Merzhanov, A.G., Haykin, B.I.: Theory of homogeneous combustion waves, ISMAN RAS, Chernogolovka, p. 160 (1992) (in Russian)Google Scholar
  7. 7.
    Zel’dovich, Y.B., Barenblatt, G.A., Machviladze, D.V., Teytel’boym, A.A.: Mathematical theory of flame propagation. Ed. Nauka, Moscow, p. 620 (1980) (in Russian)Google Scholar
  8. 8.
    Frank-Kamenetsky, D.A.: Diffusion and heat transfer in chemical kinetics. Ed. Nauka, Moscow, p. 492 (1967) (in Russian)Google Scholar
  9. 9.
    Williams, F.A.,: Combustion Theory, 2nd edn. Addison, Wiley, p. 520 (1985)Google Scholar
  10. 10.
    Zel’dovich, Y.B.: Chain reactions in hot flames—an approximate theory of flame propagation, Kinetics and catalysis, 2, 305 (1961) (in Russian)Google Scholar
  11. 11.
    Tables of physical values (handbook (ed.) by Kikoin, I.K.), Moscow, Atomizdat, p. 1007 (1976) (in Russian)Google Scholar
  12. 12.
    Azatyan, V.V., Borisov, A.A., Merzhanov, A.G., Kalachev, V.I., et al.: Inhibition of different regimes of hydrogen combustion with propene and isopropanol. Phys. Combust. Expl. 41, 3 (2003) (in Russian)Google Scholar
  13. 13.
    Semenov, N.N.: On some problems of chemical kinetics and reaction ability. p. 685, Academy of Sciences of the USSR, Moscow, (1958) (in Russian)Google Scholar
  14. 14.
    Rubtsov, N.M.: Influence of chemically active additives on the detonation velocity and detonation limit in rich mixtures. Theor. Found. Chem. Technol. 39, 345 (2005). (in Russian)Google Scholar
  15. 15.
    Warnatz, J., Maas, U., Dibble, R.W.: Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 3rd edn, p 299. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., et al.: Evaluated data for combustion modeling. J. Ph. Chem. Ref. Data 21, 411(1992)Google Scholar
  17. 17.
    Azatyan, V.V., Bolod’an, I.A., Navtzenya, V.Y., Shebeko, Y.N.: Dominating role of branching and termination of reaction chains in occurrence of concentration limits of flame propagation. Russ. J. Chem. Phys. A 76, 817 (2002), 76, 775 (2002) (in Russian)Google Scholar
  18. 18.
    Knox, J.H.: A new mechanism for the low temperature oxidation of hydrocarbons in gas phase. Combust. Flame 9, 297 (1965)CrossRefGoogle Scholar
  19. 19.
    Azatyan, V.V., Gaganidze, K.I., Kolesnikov, S.A., Trubnikov, G.R.: Detection of HO2 radicals in the rarified flame H2 and O2. Kinet. Catal. 23, 244 (1982). (in Russian)Google Scholar
  20. 20.
    Lewis, B., Von Elbe, G.: Combustion, Explosions and Flame in Gases, p. 566. Acadamic Press, New York (1987)Google Scholar
  21. 21.
    Harris, G.W., Pitts, J.N.: Absolute rate constants and temperature dependencies for the gas phase reactions of H atoms with propene and butenes in the temperature range 298–445 K. J. Chem. Phys. 77, 3994 (1982)Google Scholar
  22. 22.
    Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I., Seplyarsky, B.S.: Various influence of active chemical additives on hydrogen and hydrocarbons combustion. Int. J. Chem. Mater. Res. 2(9): 102-115 (2014).
  23. 23.
    Dixon-Lewis, G., Linnett, G.W.: The effect of organic substances on the upper limits of inflammability of some hydrogen—carbon monoxide—air mixtures. Proc. Roy. Soc. A 48, 210 (1951)Google Scholar
  24. 24.
    Rubtsov, N.M., Seplyarskii, B.S., Tsvetkov, G.I., Chernysh, V.I.: Flame propagation limits in H2—air mixtures in the presence of small inhibitor additives. Mendeleev Commun. 18, 296 (2008)Google Scholar
  25. 25.
    Rubtsov, N.M., Seplyarskii, B.S.: On the nature of an upper concentration limit of flame propagation in an H2 + air mixture. Mendeleev Commun. 19, 105 (2009)Google Scholar
  26. 26.
    Azatyan, V.V., Shebeko, Y.N., Kopulov, S. N.: Inhibition of combustion of H2–air mixtures with alcohol additives. In: Proceedings of the 12th International Symposium on Combustion and Explosion. Part 1. Chernogolovka, p. 6 (2006) (in Russian)Google Scholar
  27. 27.
    Shebeko, Y.N, Kopylov, S.N., Azatyan, V.V.: Influence of Alcohol Vapours on Combustion of Mixtures of Hydrogen and Methane in Air. In: Proceedings of the 3rd International Seminar on Fire and Explosion Hazards, Lancasire, England, p. 525 (2000)Google Scholar
  28. 28.
    Rubtsov, N.M., Tsvetkov, G.I., Chernysh, V.I., Different effects of active minor admixtures on hydrogen and methane ignitions. Kinet. Catal. (Engl. Transl.), 49, 344 (2008)Google Scholar
  29. 29.
    Tsang, W.: Chemical kinetic database for hydrocarbon pyrolysis. Ind. Eng. Chem. 31, 3 (1992)CrossRefGoogle Scholar
  30. 30.
    Peters, N., Rogg, B.: Reduced Kinetic Mechanisms for Applications in Combustion Systems. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  31. 31.
    Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, TH., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modeling: supplement II, J. Phys. Chem. Ref. Data 3, 34 (2005)Google Scholar
  32. 32.
    Rubtsov, N.M., Seplyarskii, B.S., Tsvetkov, G.I., Chernysh, V. I.: Effect of added reactive agents on the flame propagation velocity in rich hydrogen-air mixtures. Theor. Found. Chem. Eng. (Engl. Transl) 42, 882 (2008)Google Scholar
  33. 33.
    Cashdollar, K.I., Hertsberg, M., Zlochower, I.A., Lucci, C.E., Green, G.M., Thomas, R.A.: Laboratory flammability studies of mixtures of hydrogen, nitrous oxide and air, p. 71. Richland, WA, Pittsburgh Research Central Final Report to DOE and Westinghouse Hanford Company (1992)Google Scholar
  34. 34.
    Atkinson, R., Baulch, D.L., Cox, R.A., Hampson Jr. R.F., Kerr, J.A., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 26, 1329 (1997)CrossRefGoogle Scholar
  35. 35.
    Bromly, J.H., Barnes, F.J., Nelson, P.F., Haynes, B.S.: Kinetics and modeling of the H2-O2-NOx system. Int. J. Chem. Kinet. 27, 1165 (1995)CrossRefGoogle Scholar
  36. 36.
    Cobos, C.J., Troe, J.: Theory of thermal unimolecular reactions at high pressures II. Analysis of experimental results. J. Chem. Phys. 1985, 83 (1010)Google Scholar
  37. 37.
    Knox, J.H., Wells, C.H.J.: Slow Oxidation of Ethane and Ethylene in the Gas Phase. Trans. Far. Soc 59, 2786 (1963)Google Scholar
  38. 38.
    Saxena, S.C., Mathur, S., Gupta, G.P.: The thermal conductivity data of some binary gas mixtures involving nonpolar polyatomic gases. Suppl. Def. Sci. J. 16, 99 (1966)Google Scholar
  39. 39.
    Halstead, C.J., Jenkins, D.R.: Rates of H + H + M and H + OH + M reactions in flames. Combust. Flame 14, 321 (1970)CrossRefGoogle Scholar
  40. 40.
    Germann, T.C., Miller, W.H.: Quantum mechanical pressure dependent reaction and recombination rates for OH + O → O2 + H. J. Phys. Chem. A 101, 6358 (1997)CrossRefGoogle Scholar
  41. 41.
    Dowdy, D.R., Smith, D.B., Taylor, S.C., Williams, A.: The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures. Proc. Combust. Inst. 23, 325 (1990)CrossRefGoogle Scholar
  42. 42.
    Dahoe, A.E.: Laminar burning velocities of hydrogen–air mixtures from closed vessel gas explosions. J. Loss Prev. Proc. Ind. 18, 152 (2005)Google Scholar
  43. 43.
    Law, C.K., Makino, A., Lu, T.F.: On the off-stoichiometric peaking of adiabatic flame temperature. Combust. Flame 145, 808 (2006)CrossRefGoogle Scholar
  44. 44.
    Lilley, D.: Adiabatic Flame Temperature Calculation, AIAA-2003-5979. In: Proceedings of the 1st International Energy Conversion Engineering Conference, Portsmouth, Virginia, p. 10 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Russian Academy of SciencesInstitute of Structural Macrokinetics and Materials ScienceMoscowRussia

Personalised recommendations