Computational Music Analysis pp 303-333 | Cite as
A Wavelet-Based Approach to Pattern Discovery in Melodies
- 1 Citations
- 1.9k Downloads
Abstract
We present a computational method for pattern discovery based on the application of the wavelet transform to symbolic representations of melodies or monophonic voices. We model the importance of a discovered pattern in terms of the compression ratio that can be achieved by using it to describe that part of the melody covered by its occurrences. The proposed method resembles that of paradigmatic analysis developed by Ruwet (1966) and Nattiez (1975). In our approach, melodies are represented either as ‘raw’ 1-dimensional pitch signals or as these signals filtered with the continuous wavelet transform (CWT) at a single scale using the Haar wavelet. These representations are segmented using various approaches and the segments are then concatenated based on their similarity. The concatenated segments are compared, clustered and ranked. The method was evaluated on two musicological tasks: discovering themes and sections in the JKU Patterns Development Database and determining the parent compositions of excerpts from J. S. Bach’s Two-Part Inventions (BWV 772–786). The results indicate that the new approach performs well at finding noticeable and/or important patterns in melodies and that filtering makes the method robust to melodic variation.
Keywords
Continuous Wavelet Transform Dynamic Time Warping Haar Wavelet Pattern Discovery Music PerceptionPreview
Unable to display preview. Download preview PDF.
References
- Adiloglu, K., Noll, T., and Obermayer, K. (2006). A paradigmatic approach to extract the melodic structure of a musical piece. Journal of New Music Research, 35(3):221-236.Google Scholar
- Anagnostopoulou, C. and Westermann, G. (1997). Classification in music: A computational model for paradigmatic analysis. In Proceedings of the International Computer Music Conference, pages 125-128, Thessaloniki, Greece.Google Scholar
- Antoine, J.-P. (1999). Wavelet analysis: a new tool in physics. In van den Berg, J. C., editor, Wavelets in Physics. Cambridge University Press.Google Scholar
- Aucouturier, J.-J. and Sandler, M. (2002). Finding repeating patterns in acoustic musical signals: Applications for audio thumbnailing. In Audio Engineering Society 22nd International Conference on Virtual, Synthetic, and Entertainment Audio (AES22), Espoo, Finland.Google Scholar
- Cambouropoulos, E. (1997). Musical rhythm: A formal model for determining local boundaries, accents and metre in a melodic surface. In Leman, M., editor, Music, Gestalt, and Computing, volume 1317 of Lecture Notes in Artificial Intelligence, pages 277-293. Springer.Google Scholar
- Cambouropoulos, E. (1998). Towards a general computational theory of musical structure. PhD thesis, University of Edinburgh.Google Scholar
- Cambouropoulos, E. (2001). The local boundary detection model (LBDM) and its application in the study of expressive timing. In Proceedings of the International Computer Music Conference (ICMC’2001), Havana, Cuba.Google Scholar
- Cambouropoulos, E. and Widmer, G. (2000). Automated motivic analysis via melodic clustering. Journal of New Music Research, 29(4):303-317.Google Scholar
- Collins, T. (2014). MIREX 2014 Competition: Discovery of Repeated Themes and Sections. http://tinyurl.com/krnqzn5. Accessed on 9 April 2015.
- Collins, T., Laney, R., Willis, A., and Garthwaite, P. H. (2011). Modeling pattern importance in Chopin’s Mazurkas. Music Perception, 28(4):387-414.Google Scholar
- Conklin, D. (2006). Melodic analysis with segment classes. Machine Learning, 65(2-3):349-360.Google Scholar
- Conklin, D. and Anagnostopoulou, C. (2006). Segmental pattern discovery in music. INFORMS Journal on computing, 18(3):285-293.Google Scholar
- Dreyfus, L. (1996). Bach and the Patterns of Invention. Harvard University Press.Google Scholar
- Eerola, T. and Toiviainen, P. (2004). MIDI Toolbox: MATLAB tools for music research. Available online at http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/miditoolbox/
- Everitt, B., Landau, S., Leese, M., and Stahl, D. (2011). Cluster Analysis. Wiley Series in Probability and Statistics. Wiley.Google Scholar
- Farge, M. (1992). Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics, 24(1):395-458.Google Scholar
- Florek, K., Łukaszewicz, J., Perkal, J., Steinhaus, H., and Zubrzycki, S. (1951). Sur la liaison et la division des points d’un ensemble fini. Colloquium Mathematicae, 2(3-4):282-285.Google Scholar
- Forth, J. (2012). Cognitively-motivated geometric methods of pattern discovery and models of similarity in music. PhD thesis, Goldsmiths College, University of London.Google Scholar
- Grilo, C. F. A., Machado, F., and Cardoso, F. A. B. (2001). Paradigmatic analysis using genetic programming. In Artificial Intelligence and Simulation of Behaviour (AISB 2001), York, UK.Google Scholar
- Haar, A. (1910). Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen, 69(3):331-371.Google Scholar
- Höthker, K., Hornel, D., and Anagnostopoulou, C. (2001). Investigating the influence of representations and algorithms in music classification. Computers and the Humanities, 35(1):65-79.Google Scholar
- Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106.Google Scholar
- Huron, D. (1996). The melodic arch in Western folksongs. Computing in Musicology, 10:3-23.Google Scholar
- Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3):241- 254.Google Scholar
- Kay, K. N., Naselaris, T., Prenger, R. J., and Gallant, J. L. (2008). Identifying natural images from human brain activity. Nature, 452(7185):352-355.Google Scholar
- Kurby, C. A. and Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in Cognitive Sciences, 12(2):72-79.Google Scholar
- Lamont, A. and Dibben, N. (2001). Motivic structure and the perception of similarity. Music Perception, 18(3):245-274.Google Scholar
- Lartillot, O. (2005). Efficient extraction of closed motivic patterns in multi-dimensional symbolic representations of music. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), pages 191-198, London, UK. Available online at <http://ismir2005.ismir.net/proceedings/1082.pdf >.
- Lartillot, O. (2014). PatMinr: In-depth motivic analysis of symbolic monophonic sequences. In Music Information Retrieval Evaluation Exchange (MIREX 2014), Competition on Discovery of Repeated Themes and Sections.Google Scholar
- Lerdahl, F. and Jackendoff, R. (1983). A Generative Theory of Tonal Music. MIT Press. Google Scholar
- Mallat, S. (2009). A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 3rd edition. Google Scholar
- Mallat, S. and Hwang, W. L. (1992). Singularity detection and processing with wavelets. Information Theory, IEEE Transactions on, 38(2):617-643. Google Scholar
- Marx, A. B. (1837). Die Lehre von der musikalischen Komposition: praktisch- theoretisch, volume 1. Breitkopf and Härtel.Google Scholar
- Mazzola, G. et al. (2002). The Topos of Music. Birkhäuser.Google Scholar
- McGettrick, P. (1997). MIDIMatch: Musical pattern matching in real time. PhD thesis, MSc. Dissertation, York University, UK.Google Scholar
- Meredith, D. (2006). Point-set algorithms for pattern discovery and pattern matching in music. In Proceedings of the Dagstuhl Seminar on Content-based Retrieval (No. 06171, 23-28 April, 2006), Schloss Dagstuhl, Germany. Available online at http://drops.dagstuhl.de/opus/volltexte/2006/652.
- Meredith, D. (2013). COSIATEC and SIATECCompress: Pattern discovery by geometric compression. In Music Information Retrieval Evaluation Exchange (MIREX), Curitiba, Brazil.Google Scholar
- Meredith, D. (2015). Music analysis and point-set compression. Journal of New Music Research, 44(3). In press.Google Scholar
- Meredith, D., Lemstrom, K., and Wiggins, G. A. (2002). Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music. Journal of New Music Research, 31(4):321-345.Google Scholar
- Mitchell, T. (1997). Machine Learning. McGraw-Hill.Google Scholar
- Monelle, R. (1992). Linguistics and Semiotics in Music. Harwood Academic.Google Scholar
- Müllensiefen, D. and Wiggins, G. (2011a). Polynomial functions as a representation of melodic phrase contour. In Schneider, A. and von Ruschkowski, A., editors, Systematic Musicology: Empirical and Theoretical Studies, volume 28 of Hamburger Jahrbuch für Musikwissenschaft. Peter Lang.Google Scholar
- Müllensiefen, D. and Wiggins, G. A. (2011b). Sloboda and Parker’s recall paradigm for melodic memory: a new, computational perspective. In Deliege, I. and Davidson, J. W., editors, Music and the Mind: Essays in Honour of John Sloboda, pages 161-188. Oxford University Press.Google Scholar
- Müller, M. (2007). Information Retrieval for Music and Motion, volume 2. Springer.Google Scholar
- Muzy, J., Bacry, E., and Arneodo, A. (1991). Wavelets and multifractal formalism for singular signals: application to turbulence data. Physical Review Letters, 67(25):3515.Google Scholar
- Nattiez, J.-J. (1975). Fondements d’une sémiologie de la musique. Union Générale d’Éditions.Google Scholar
- Nattiez, J.-J. (1986). La sémiologie musicale dix ans après. Analyse musicale, 2:22-33.Google Scholar
- Nieto, O. and Farbood, M. (2013). Mirex 2013: Discovering musical patterns using audio structural segmentation techniques. In Music Information Retrieval Evaluation eXchange (MIREX 2013), Curitiba, Brazil.Google Scholar
- Nieto, O. and Farbood, M. M. (2014). Mirex 2014 entry: Music segmentation techniques and greedy path finder algorithm to discover musical patterns. In Music Information Retrieval Evaluation Exchange (MIREX 2014), Taipei, Taiwan.Google Scholar
- Pinto, A. (2009). Indexing melodic sequences via wavelet transform. In Multimedia and Expo, 2009. ICME2009. IEEE International Conference on, pages 882-885. IEEE.Google Scholar
- Reicha, A. (1814). Traité de mélodie. Chez l’auteur.Google Scholar
- Riemann, H. (1912). Handbuch der Phrasierung. Hesse.Google Scholar
- Ruwet, N. (1966). Méthodes d’analyses en musicologie. Revue belge de musicologie, 20(1/4):65-90.Google Scholar
- Schenker, H. (1935). Derfreie Satz. Universal Edition. (Published in English as E. Oster (trans., ed.) Free Composition, Longman, New York, 1979.).Google Scholar
- Schmuckler, M. A. (1999). Testing models of melodic contour similarity. Music Perception, 16(3):295-326.Google Scholar
- Schoenberg, A. (1967). Fundamentals of Musical Composition. Faber.Google Scholar
- Smith, L. M. and Honing, H. (2008). Time-frequency representation of musical rhythm by continuous wavelets. Journal of Mathematics and Music, 2(2):81-97.Google Scholar
- Sneath, P. H. (1957). The application of computers to taxonomy. Journal of General Microbiology, 17(1):201-226.Google Scholar
- Stein, L. (1979). Structure & style: the study and analysis of musical forms. Summy-Birchard Company.Google Scholar
- Tenney, J. and Polansky, L. (1980). Temporal gestalt perception in music. Journal of Music Theory, 24(2):205-241.Google Scholar
- Torrence, C. and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1):61-78.Google Scholar
- van Kranenburg, P., Volk, A., and Wiering, F. (2013). A comparison between global and local features for computational classification of folk song melodies. Journal of New Music Research, 42(1):1-18.Google Scholar
- Velarde, G. and Meredith, D. (2014). A wavelet-based approach to the discovery of themes and sections in monophonic melodies. In Music Information Retrieval Evaluation Exchange (MIREX 2014), Taipei, Taiwan.Google Scholar
- Velarde, G., Weyde, T., and Meredith, D. (2013). An approach to melodic segmentation and classification based on filtering with the Haar-wavelet. Journal of New Music Research, 42(4):325-345.Google Scholar
- Weyde, T. (2001). Grouping, similarity and the recognition of rhythmic structure. In Proceedings of the International Computer Music Conference (ICMC), Havana, Cuba.Google Scholar
- Weyde, T. (2002). Integrating segmentation and similarity in melodic analysis. In Proceedings of the International Conference on Music Perception and Cognition, pages 240-243, Sydney, Australia.Google Scholar
- Woody, N. A. and Brown, S. D. (2007). Selecting wavelet transform scales for multivariate classification. Journal of Chemometrics, 21(7-9):357-363.Google Scholar