A Wavelet-Based Approach to Pattern Discovery in Melodies

Chapter

Abstract

We present a computational method for pattern discovery based on the application of the wavelet transform to symbolic representations of melodies or monophonic voices. We model the importance of a discovered pattern in terms of the compression ratio that can be achieved by using it to describe that part of the melody covered by its occurrences. The proposed method resembles that of paradigmatic analysis developed by Ruwet (1966) and Nattiez (1975). In our approach, melodies are represented either as ‘raw’ 1-dimensional pitch signals or as these signals filtered with the continuous wavelet transform (CWT) at a single scale using the Haar wavelet. These representations are segmented using various approaches and the segments are then concatenated based on their similarity. The concatenated segments are compared, clustered and ranked. The method was evaluated on two musicological tasks: discovering themes and sections in the JKU Patterns Development Database and determining the parent compositions of excerpts from J. S. Bach’s Two-Part Inventions (BWV 772–786). The results indicate that the new approach performs well at finding noticeable and/or important patterns in melodies and that filtering makes the method robust to melodic variation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adiloglu, K., Noll, T., and Obermayer, K. (2006). A paradigmatic approach to extract the melodic structure of a musical piece. Journal of New Music Research, 35(3):221-236.Google Scholar
  2. Anagnostopoulou, C. and Westermann, G. (1997). Classification in music: A computational model for paradigmatic analysis. In Proceedings of the International Computer Music Conference, pages 125-128, Thessaloniki, Greece.Google Scholar
  3. Antoine, J.-P. (1999). Wavelet analysis: a new tool in physics. In van den Berg, J. C., editor, Wavelets in Physics. Cambridge University Press.Google Scholar
  4. Aucouturier, J.-J. and Sandler, M. (2002). Finding repeating patterns in acoustic musical signals: Applications for audio thumbnailing. In Audio Engineering Society 22nd International Conference on Virtual, Synthetic, and Entertainment Audio (AES22), Espoo, Finland.Google Scholar
  5. Cambouropoulos, E. (1997). Musical rhythm: A formal model for determining local boundaries, accents and metre in a melodic surface. In Leman, M., editor, Music, Gestalt, and Computing, volume 1317 of Lecture Notes in Artificial Intelligence, pages 277-293. Springer.Google Scholar
  6. Cambouropoulos, E. (1998). Towards a general computational theory of musical structure. PhD thesis, University of Edinburgh.Google Scholar
  7. Cambouropoulos, E. (2001). The local boundary detection model (LBDM) and its application in the study of expressive timing. In Proceedings of the International Computer Music Conference (ICMC’2001), Havana, Cuba.Google Scholar
  8. Cambouropoulos, E. and Widmer, G. (2000). Automated motivic analysis via melodic clustering. Journal of New Music Research, 29(4):303-317.Google Scholar
  9. Collins, T. (2014). MIREX 2014 Competition: Discovery of Repeated Themes and Sections. http://tinyurl.com/krnqzn5. Accessed on 9 April 2015.
  10. Collins, T., Laney, R., Willis, A., and Garthwaite, P. H. (2011). Modeling pattern importance in Chopin’s Mazurkas. Music Perception, 28(4):387-414.Google Scholar
  11. Conklin, D. (2006). Melodic analysis with segment classes. Machine Learning, 65(2-3):349-360.Google Scholar
  12. Conklin, D. and Anagnostopoulou, C. (2006). Segmental pattern discovery in music. INFORMS Journal on computing, 18(3):285-293.Google Scholar
  13. Dreyfus, L. (1996). Bach and the Patterns of Invention. Harvard University Press.Google Scholar
  14. Eerola, T. and Toiviainen, P. (2004). MIDI Toolbox: MATLAB tools for music research. Available online at http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/miditoolbox/
  15. Everitt, B., Landau, S., Leese, M., and Stahl, D. (2011). Cluster Analysis. Wiley Series in Probability and Statistics. Wiley.Google Scholar
  16. Farge, M. (1992). Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics, 24(1):395-458.Google Scholar
  17. Florek, K., Łukaszewicz, J., Perkal, J., Steinhaus, H., and Zubrzycki, S. (1951). Sur la liaison et la division des points d’un ensemble fini. Colloquium Mathematicae, 2(3-4):282-285.Google Scholar
  18. Forth, J. (2012). Cognitively-motivated geometric methods of pattern discovery and models of similarity in music. PhD thesis, Goldsmiths College, University of London.Google Scholar
  19. Grilo, C. F. A., Machado, F., and Cardoso, F. A. B. (2001). Paradigmatic analysis using genetic programming. In Artificial Intelligence and Simulation of Behaviour (AISB 2001), York, UK.Google Scholar
  20. Haar, A. (1910). Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen, 69(3):331-371.Google Scholar
  21. Höthker, K., Hornel, D., and Anagnostopoulou, C. (2001). Investigating the influence of representations and algorithms in music classification. Computers and the Humanities, 35(1):65-79.Google Scholar
  22. Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1):106.Google Scholar
  23. Huron, D. (1996). The melodic arch in Western folksongs. Computing in Musicology, 10:3-23.Google Scholar
  24. Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3):241- 254.Google Scholar
  25. Kay, K. N., Naselaris, T., Prenger, R. J., and Gallant, J. L. (2008). Identifying natural images from human brain activity. Nature, 452(7185):352-355.Google Scholar
  26. Kurby, C. A. and Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in Cognitive Sciences, 12(2):72-79.Google Scholar
  27. Lamont, A. and Dibben, N. (2001). Motivic structure and the perception of similarity. Music Perception, 18(3):245-274.Google Scholar
  28. Lartillot, O. (2005). Efficient extraction of closed motivic patterns in multi-dimensional symbolic representations of music. In Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR 2005), pages 191-198, London, UK. Available online at <http://ismir2005.ismir.net/proceedings/1082.pdf >.
  29. Lartillot, O. (2014). PatMinr: In-depth motivic analysis of symbolic monophonic sequences. In Music Information Retrieval Evaluation Exchange (MIREX 2014), Competition on Discovery of Repeated Themes and Sections.Google Scholar
  30. Lerdahl, F. and Jackendoff, R. (1983). A Generative Theory of Tonal Music. MIT Press. Google Scholar
  31. Mallat, S. (2009). A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 3rd edition. Google Scholar
  32. Mallat, S. and Hwang, W. L. (1992). Singularity detection and processing with wavelets. Information Theory, IEEE Transactions on, 38(2):617-643. Google Scholar
  33. Marx, A. B. (1837). Die Lehre von der musikalischen Komposition: praktisch- theoretisch, volume 1. Breitkopf and Härtel.Google Scholar
  34. Mazzola, G. et al. (2002). The Topos of Music. Birkhäuser.Google Scholar
  35. McGettrick, P. (1997). MIDIMatch: Musical pattern matching in real time. PhD thesis, MSc. Dissertation, York University, UK.Google Scholar
  36. Meredith, D. (2006). Point-set algorithms for pattern discovery and pattern matching in music. In Proceedings of the Dagstuhl Seminar on Content-based Retrieval (No. 06171, 23-28 April, 2006), Schloss Dagstuhl, Germany. Available online at http://drops.dagstuhl.de/opus/volltexte/2006/652.
  37. Meredith, D. (2013). COSIATEC and SIATECCompress: Pattern discovery by geometric compression. In Music Information Retrieval Evaluation Exchange (MIREX), Curitiba, Brazil.Google Scholar
  38. Meredith, D. (2015). Music analysis and point-set compression. Journal of New Music Research, 44(3). In press.Google Scholar
  39. Meredith, D., Lemstrom, K., and Wiggins, G. A. (2002). Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music. Journal of New Music Research, 31(4):321-345.Google Scholar
  40. Mitchell, T. (1997). Machine Learning. McGraw-Hill.Google Scholar
  41. Monelle, R. (1992). Linguistics and Semiotics in Music. Harwood Academic.Google Scholar
  42. Müllensiefen, D. and Wiggins, G. (2011a). Polynomial functions as a representation of melodic phrase contour. In Schneider, A. and von Ruschkowski, A., editors, Systematic Musicology: Empirical and Theoretical Studies, volume 28 of Hamburger Jahrbuch für Musikwissenschaft. Peter Lang.Google Scholar
  43. Müllensiefen, D. and Wiggins, G. A. (2011b). Sloboda and Parker’s recall paradigm for melodic memory: a new, computational perspective. In Deliege, I. and Davidson, J. W., editors, Music and the Mind: Essays in Honour of John Sloboda, pages 161-188. Oxford University Press.Google Scholar
  44. Müller, M. (2007). Information Retrieval for Music and Motion, volume 2. Springer.Google Scholar
  45. Muzy, J., Bacry, E., and Arneodo, A. (1991). Wavelets and multifractal formalism for singular signals: application to turbulence data. Physical Review Letters, 67(25):3515.Google Scholar
  46. Nattiez, J.-J. (1975). Fondements d’une sémiologie de la musique. Union Générale d’Éditions.Google Scholar
  47. Nattiez, J.-J. (1986). La sémiologie musicale dix ans après. Analyse musicale, 2:22-33.Google Scholar
  48. Nieto, O. and Farbood, M. (2013). Mirex 2013: Discovering musical patterns using audio structural segmentation techniques. In Music Information Retrieval Evaluation eXchange (MIREX 2013), Curitiba, Brazil.Google Scholar
  49. Nieto, O. and Farbood, M. M. (2014). Mirex 2014 entry: Music segmentation techniques and greedy path finder algorithm to discover musical patterns. In Music Information Retrieval Evaluation Exchange (MIREX 2014), Taipei, Taiwan.Google Scholar
  50. Pinto, A. (2009). Indexing melodic sequences via wavelet transform. In Multimedia and Expo, 2009. ICME2009. IEEE International Conference on, pages 882-885. IEEE.Google Scholar
  51. Reicha, A. (1814). Traité de mélodie. Chez l’auteur.Google Scholar
  52. Riemann, H. (1912). Handbuch der Phrasierung. Hesse.Google Scholar
  53. Ruwet, N. (1966). Méthodes d’analyses en musicologie. Revue belge de musicologie, 20(1/4):65-90.Google Scholar
  54. Schenker, H. (1935). Derfreie Satz. Universal Edition. (Published in English as E. Oster (trans., ed.) Free Composition, Longman, New York, 1979.).Google Scholar
  55. Schmuckler, M. A. (1999). Testing models of melodic contour similarity. Music Perception, 16(3):295-326.Google Scholar
  56. Schoenberg, A. (1967). Fundamentals of Musical Composition. Faber.Google Scholar
  57. Smith, L. M. and Honing, H. (2008). Time-frequency representation of musical rhythm by continuous wavelets. Journal of Mathematics and Music, 2(2):81-97.Google Scholar
  58. Sneath, P. H. (1957). The application of computers to taxonomy. Journal of General Microbiology, 17(1):201-226.Google Scholar
  59. Stein, L. (1979). Structure & style: the study and analysis of musical forms. Summy-Birchard Company.Google Scholar
  60. Tenney, J. and Polansky, L. (1980). Temporal gestalt perception in music. Journal of Music Theory, 24(2):205-241.Google Scholar
  61. Torrence, C. and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79(1):61-78.Google Scholar
  62. van Kranenburg, P., Volk, A., and Wiering, F. (2013). A comparison between global and local features for computational classification of folk song melodies. Journal of New Music Research, 42(1):1-18.Google Scholar
  63. Velarde, G. and Meredith, D. (2014). A wavelet-based approach to the discovery of themes and sections in monophonic melodies. In Music Information Retrieval Evaluation Exchange (MIREX 2014), Taipei, Taiwan.Google Scholar
  64. Velarde, G., Weyde, T., and Meredith, D. (2013). An approach to melodic segmentation and classification based on filtering with the Haar-wavelet. Journal of New Music Research, 42(4):325-345.Google Scholar
  65. Weyde, T. (2001). Grouping, similarity and the recognition of rhythmic structure. In Proceedings of the International Computer Music Conference (ICMC), Havana, Cuba.Google Scholar
  66. Weyde, T. (2002). Integrating segmentation and similarity in melodic analysis. In Proceedings of the International Conference on Music Perception and Cognition, pages 240-243, Sydney, Australia.Google Scholar
  67. Woody, N. A. and Brown, S. D. (2007). Selecting wavelet transform scales for multivariate classification. Journal of Chemometrics, 21(7-9):357-363.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Architecture, Design and Media TechnologyAalborg UniversityAalborgDenmark
  2. 2.Department of Computer ScienceCity University LondonLondonUK

Personalised recommendations